Advertisement

Analytical and Bioanalytical Chemistry

, Volume 383, Issue 4, pp 660–667 | Cite as

Real-time monitoring of L-glutamate release from mouse brain slices under ischemia with a glass capillary-based enzyme electrode

  • Naoto Nakamura
  • Kayoko Negishi
  • Ayumi Hirano
  • Masao SugawaraEmail author
Original Paper

Abstract

Real-time monitoring of L-glutamate release from various neuronal regions of mouse hippocampal slices under ischemia (a glucose-free hypoxia condition) is described. A glass capillary microelectrode with a tip size of ∼10 μm containing a very small volume (∼2 μL) of a solution of glutamate oxidase (GluOx) and ascorbate oxidase was used. First, the amperometric response behavior of the electrode at 0 V versus Ag/AgCl was characterized with a standard glutamate solution in terms of continuous measurements, effect of oxygen, viscosity of solution and concentration dependence. The electrode was applied to the real-time monitoring of L-glutamate released from different neuronal regions of acute hippocampal slices submerged in a hypoxia solution. The time-resolved amounts of L-glutamate released at various neuronal regions (CA1, CA3 and DG) of mouse hippocampal slices were quantified and compared with the reported L-glutamate fluxes using difference-image analysis during ischemia.

Keywords

Glass capillary electrode Enzyme sensor L-glutamate Mouse hippocampal slices Ischemia 

Notes

Acknowledgements

The authors are grateful to T. Oka for his experimental help. This work was supported by Grants for Scientific Research by the Ministry of Education, Science and Culture, Japan. Financial support from a Research Grant from the College of Humanities and Sciences, Nihon University is also acknowledged.

Reference

  1. 1.
    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) Pharmacol Rev 51:7PubMedGoogle Scholar
  2. 2.
    Albery WJ, Barlett PN, Cass EG (1987) Phil Trans R Soc Lond B 316:107CrossRefGoogle Scholar
  3. 3.
    Albery WJ, Boutelle MG, Galley PT (1992) J Chem Soc Chem Commun 900Google Scholar
  4. 4.
    Berners MOM, Boutelle MG, Fillenz M (1994) Anal Chem 66:2017CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou SY, Zuo H, Stobaugh JF, Lunte EC, Lunte M (1995) Anal Chem 67:594CrossRefPubMedGoogle Scholar
  6. 6.
    Rowley HL, Martin KF, Marsden CA (1995) J Neurosci Methods 57:93CrossRefPubMedGoogle Scholar
  7. 7.
    Zilkha E, Obrenovitch TP, Koshy A, Kusakabe H, Bennetto HP (1995) J Neurosci Methods 60:1CrossRefPubMedGoogle Scholar
  8. 8.
    Asai S, Iribe Y, Kohno T, Ishikawa K (1996) NeuroReport 7:1092PubMedCrossRefGoogle Scholar
  9. 9.
    Lada MW, Knnedy RT (1996) Anal Chem 68:2790CrossRefPubMedGoogle Scholar
  10. 10.
    Kohno T, Asai S, Iribe Y, Hosoi I, Shibata K, Ishikawa K (1998) J Neurosci Methods 81:199CrossRefPubMedGoogle Scholar
  11. 11.
    Errington ML, Galley PT, Bliss TVP (2003) Phil Trans R Soc Lond B 358:675CrossRefGoogle Scholar
  12. 12.
    Hu Y, Mitchell KM, Albahadily FN, Michaelis EK, Wilson GS (1994) Brain Res 659:117CrossRefPubMedGoogle Scholar
  13. 13.
    Kulagina NV, Shankar L, Michael AC (1999) Anal Chem 71:5093CrossRefPubMedGoogle Scholar
  14. 14.
    Niwa O, Torimitsu K, Morita M, Osborne P, Tamamoto K (1996) Anal Chem 68:1865CrossRefPubMedGoogle Scholar
  15. 15.
    Niwa O, Horiuchi T, Torimitsu K (1997) Biosens Bioelectron 12:311CrossRefPubMedGoogle Scholar
  16. 16.
    Kasai N, Jimbo Y, Torimitsu K (2002) Anal Sci 18:1325CrossRefPubMedGoogle Scholar
  17. 17.
    Castillo J, Blöchl A, Dennison S, Schulmann W, Csöregi E (2005) Biosens Bioelectron 20:2116CrossRefPubMedGoogle Scholar
  18. 18.
    Kasai N, Jimbo Y, Niwa O, Matsue T, Torimitsu K (2001) Neurosci Lett 304:112CrossRefPubMedGoogle Scholar
  19. 19.
    Nakajima K, Yamagiwa T, Hirano A, Sugawara M (2003) Anal Sci 19:55CrossRefPubMedGoogle Scholar
  20. 20.
    Nishizawa Y (2001) Life Sci 69:369CrossRefPubMedGoogle Scholar
  21. 21.
    Lipton P (1999) Physiol Rev 79:1431PubMedGoogle Scholar
  22. 22.
    White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Raflos JA, Krause GS (2000) J Neurosci 179:1Google Scholar
  23. 23.
    Cammack BJ, Ghasemzadeh B, Adams RN (1992) Neurochem Res 17:23CrossRefPubMedGoogle Scholar
  24. 24.
    Ghasemzedah B, Cammack J, Adams RN (1991) Brain Res 547:162CrossRefPubMedGoogle Scholar
  25. 25.
    Kusakabe H, Midorikawa Y, Kuninaka A, Yoshino H (1983) Agric Biol Chem 47:179Google Scholar
  26. 26.
    Vreeke M, Maidan R, Heller A (1992) Anal Chem 64:3084CrossRefGoogle Scholar
  27. 27.
    Tokuyama K, Clark EE, Dawson CR (1965) Biochemistry 4:1362CrossRefPubMedGoogle Scholar
  28. 28.
    Nakamura T, Makino N, Ogura Y (1968) J Biochem 64:189PubMedGoogle Scholar
  29. 29.
    Min MY, Rusakov DA, Kullmann DM (1998) Neuron 21:561CrossRefPubMedGoogle Scholar
  30. 30.
    Kullman DM, Min MY, Asztely F, Rusakov DA (1999) Phil Trans R Soc Lond B 354:395CrossRefGoogle Scholar
  31. 31.
    Hirano A, Moridera N, Akashi M, Saito M, Sugawara M (2003) Anal Chem 75:3775CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Naoto Nakamura
    • 1
  • Kayoko Negishi
    • 1
  • Ayumi Hirano
    • 2
  • Masao Sugawara
    • 1
    Email author
  1. 1.Department of Chemistry, College of Humanities and SciencesNihon UniversityTokyoJapan
  2. 2.Division of NeurophysiologyNational Institute for Medical ResearchLondonUK

Personalised recommendations