Analytical and Bioanalytical Chemistry

, Volume 381, Issue 6, pp 1114–1121 | Cite as

Escherichia coli single-strand binding protein–DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor

  • Kagan Kerman
  • Yasutaka Morita
  • Yuzuru Takamura
  • Eiichi TamiyaEmail author
Original Paper


An electrochemical hybridization biosensor based on the intrinsic oxidation signals of nucleic acids and proteins has been designed, that makes use of the unique binding event between Escherichia coli single-strand binding protein (SSB) and single-stranded DNA (ssDNA). The voltammetric signal from guanine oxidation significantly decreased upon binding of SSB to single-stranded oligonucleotides (probe), anchored on a single-walled carbon nanotube (SWCNT) -modified screen-printed carbon electrode (SPE). Simultaneously, oxidation of the tyrosine (Tyr) and tryptophan (Trp) residues of the SSB protein increased upon binding of the SSB protein to ssDNA and ss-oligonucleotides. After the hybridization, SSB did not bind to the double helix form, and the guanine signal could be observed along with the disappearance of the oxidation signal of the protein. The amplification of intrinsic guanine and protein oxidation signals by SWCNT, and a washing step with sodium dodecylsulfate, enabled the specific detection of a point mutation. Monitoring the changes in the guanine and protein signals upon hybridization greatly simplified the detection procedure. The detection limit of 0.15 μg/ml target DNA can be applied to genetic assays. To the best of our knowledge, this is the first work that utilizes the monitoring of SSB–DNA interactions on a solid transducer for the electrochemical detection of DNA hybridization by using intrinsic oxidation signals.


Electrochemical DNA sensor DNA hybridization Guanine oxidation Protein oxidation Single-strand binding protein 



K.K. acknowledges the Monbukagakusho scholarship for research students from the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT).


  1. 1.
    Jelen F, Fojta M, Palecek E (1997) J Electroanal Chem 423:141–148Google Scholar
  2. 2.
    Jelen F, Fojta M, Palecek E (1997) J Electroanal Chem 427:49–56Google Scholar
  3. 3.
    Tomschik M, Jelen F, Havran L, Trnkova L, Nielsen PE, Palecek E (1999) J Electroanal Chem 476:71–80Google Scholar
  4. 4.
    Wang J, Bollo S, Paz JLL, Sahlin E, Mukherjee B (1999) Anal Chem 71:1910–1913CrossRefGoogle Scholar
  5. 5.
    Wang Z, Liu D, Dong S (2000) Electroanalysis 12:1419–1421Google Scholar
  6. 6.
    Wang J, Rivas G, Fernandes JR, Paz JLL, Jiang M, Waymire R (1998) Anal Chim Acta 375:197–203Google Scholar
  7. 7.
    Wang J, Jiang M, Fortes A, Mukherjee B (1999) Anal Chim Acta 402:7–12Google Scholar
  8. 8.
    Wang J, Kawde A-N (2001) Anal Chim Acta 431:219–224Google Scholar
  9. 9.
    Wang J, Kawde A-N, Erdem A, Salazar M (2001) Analyst 126:2020–2024Google Scholar
  10. 10.
    Meric B, Kerman K, Ozkan D, Kara P, Ozsoz M (2002) Electroanalysis 14:1245–1250Google Scholar
  11. 11.
    Kerman K, Ozkan D, Kara P, Erdem A, Meric B, Nielsen PE, Ozsoz M (2003) Electroanalysis 15:667–670Google Scholar
  12. 12.
    Ozkan D, Erdem A, Kara P, Kerman K, Meric B, Hassmann J, Ozsoz M (2002) Anal Chem 74:5931–5936Google Scholar
  13. 13.
    Lucarelli F, Marrazza G, Palchetti I, Cesaretti S, Mascini M (2002) Anal Chim Acta 469:93–99Google Scholar
  14. 14.
    Lucarelli F, Kicela A, Palchetti I, Marrazza G, Mascini M (2002) Bioelectrochemistry 58:113–118Google Scholar
  15. 15.
    Kara P, Ozkan D, Kerman K, Meric B, Erdem A, Ozsoz M (2002) Anal Bioanal Chem 373:710–716Google Scholar
  16. 16.
    Wong ELS, Gooding JJ (2003) Anal Chem 75:3845–3852Google Scholar
  17. 17.
    Dennany L, Forster RJ, Rusling JF (2003) J Am Chem Soc 125:5213–5218Google Scholar
  18. 18.
    Jelen F, Yosypchuk B, Kourilova A, Novotny L, Palecek E (2002) Anal Chem 74:4788–4793Google Scholar
  19. 19.
    Iijima S (1991) Nature 354:56–58CrossRefGoogle Scholar
  20. 20.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Nature 382:54–56Google Scholar
  21. 21.
    Wong SS, Joselevich F, Woolley AT, Cheung CL, Lieber CM (1998) Nature 394:52–55Google Scholar
  22. 22.
    Li J, Ng H T, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Nano Lett 3:597–602Google Scholar
  23. 23.
    Wang J, Li M, Shi Z, Li N, Gu Z (2004) Electroanalysis 16:140–144Google Scholar
  24. 24.
    Cai H, Cao X, Jiang Y, He P, Fang Y (2003) Anal Bioanal Chem 375:287–293Google Scholar
  25. 25.
    Wang J, Liu G, Jan MR (2004) J Am Chem Soc 126:3010–3011CrossRefGoogle Scholar
  26. 26.
    Kerman K, Morita Y, Takamura Y, Ozsoz M, Tamiya E (2004) Electroanalysis 16:1667–1672Google Scholar
  27. 27.
    Chase JW, Williams KR (1986) Annu Rev Biochem 55:103–136Google Scholar
  28. 28.
    Meyer RR, Laine PS (1990) Microbiol Rev 54:342–380Google Scholar
  29. 29.
    Brockman JM, Frutos AG, Corn RM (1999) J Am Chem Soc 121:8044–8051CrossRefGoogle Scholar
  30. 30.
    Reynaud JA, Malfoy B, Bere A (1980) J Electroanal Chem 116:595–606Google Scholar
  31. 31.
    Brabec V, Schindlerova I (1981) Bioelectroch Bioener 8:451–458Google Scholar
  32. 32.
    Reynolds NC Jr, Kissela BM, Fleming LH (1995) Electroanalysis 7:1177–1181Google Scholar
  33. 33.
    Palecek E, Jelen F, Teijeiro C, Fucik V, Jovin TM (1993) Anal Chim Acta 273:175–186Google Scholar
  34. 34.
    Cai X, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E (1996) Anal Chim Acta 332:49–57Google Scholar
  35. 35.
    Masarik M, Kizek R, Kramer KJ, Billova S, Brazdova M, Vacek J, Bailey M, Jelen F, Howard JA (2003) Anal Chem 75:2663–2669CrossRefGoogle Scholar
  36. 36.
    Moreno L, Merkoçi A, Alegret S, Hernández-Cassou S, Saurina J (2004) Anal Chim Acta (2004) 504:251–257Google Scholar
  37. 37.
    Palecek E, Masarik M, Kizek R, Kuhlmeier D, Hassmann J, Schülein J (2004) Anal Chem 76:5930–5936Google Scholar
  38. 38.
    Havran L, Billová S, Palecek E (2004) Electroanalysis 16:1139–1148CrossRefGoogle Scholar
  39. 39.
    Masarík M, Stobiecka A, Kizek R, Jelen F, Pechan Z, Hoyer W, Jovin TM, Subramaniam V, Palecek E (2004) Electroanalysis 16:1172–1181Google Scholar
  40. 40.
    Kerman K, Morita Y, Takamura Y, Ozsoz M, Tamiya E (2004) Anal Chim Acta 510:169–174Google Scholar
  41. 41.
    Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  42. 42.
    Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nature 420:761Google Scholar
  43. 43.
    Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Science 282:95–98Google Scholar
  44. 44.
    Wu K, Fei J, Bai W, Hu S (2003) Anal Bioanal Chem 376:205–209Google Scholar
  45. 45.
    Wang J, Kawde A-N, Musameh M (2003) Analyst 128:912–916Google Scholar
  46. 46.
    Antiochia R, Lavagnini I, Magno F, Valentini F, Palleschi G (2004) Electroanalysis 16:1451–1458Google Scholar
  47. 47.
    Luong JHT, Hrapovic S, Wang D, Bensebaa F, Simard B (2004) Electroanalysis 16:132–139Google Scholar
  48. 48.
    Kozlov AG, Lohman TM (2002) Biochemistry 41:11611–11627Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Kagan Kerman
    • 1
  • Yasutaka Morita
    • 1
  • Yuzuru Takamura
    • 1
  • Eiichi Tamiya
    • 1
    Email author
  1. 1.Department of Biological Sciences and Biotechnology, School of Materials ScienceJapan Advanced Institute of Science and TechnologyTatsunokuchiJapan

Personalised recommendations