Analytical and Bioanalytical Chemistry

, Volume 381, Issue 5, pp 1027–1032 | Cite as

157-nm Laser ablation of polymeric layers for fabrication of biomolecule microarrays

  • Antonios M. Douvas
  • Panagiota S. Petrou
  • Sotirios E. Kakabakos
  • Konstantinos Misiakos
  • Panagiotis Argitis
  • Evagelia Sarantopoulou
  • Zoe Kollia
  • Alkiviadis C. Cefalas
Original Paper

Abstract

A new methodology for protein microarray fabrication is proposed based on the ablation of polymer film using laser at 157 nm (F2). The polymer has been selected among others with the criterion of negligible protein adsorption. Improved results have been obtained by pretreatment of the polymer surface with an inert protein. The use of 157-nm laser radiation allowed very good depth control during the polymeric layer ablation process. In addition the importance of laser ablation at 157 nm is based on the fact that irradiated surfaces indicate limited chemical change due to the fact that laser ablation at 157 nm is only photochemical, thus avoiding excessive surface heating and damage. Results of protein microarray fabrication are presented to illustrate the viability of the proposed method.

Keywords

Biomolecule micropatterning Protein microarrays 157-nm Laser Polymer ablation Protein adsorption Blocking 

Notes

Acknowledgements

This work was funded from the Project G5RD-CT-2002-00744 “Microprotein”.

References

  1. 1.
    Langer R, Tirell DA (2004) Nature 428:487–492CrossRefGoogle Scholar
  2. 2.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Science 270:467–470PubMedGoogle Scholar
  3. 3.
    Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA (2002) Science 296:1836–1838CrossRefGoogle Scholar
  4. 4.
    Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E (2000) Adv Mater 12:1067–1070CrossRefGoogle Scholar
  5. 5.
    Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ, Choi IS, Ingber DE, Whitesides GM (2000) Proc Nat Acad Sci USA 97:2408–2413CrossRefGoogle Scholar
  6. 6.
    Fodor SPA, Read JL, Pirrung MC, Stryer LT, Lu A, Solas D (1991) Science 251:767–773Google Scholar
  7. 7.
    Cerrina F, Blattner F, Huang W, Hue Y, Green R, Singh-Gasson S, Sussman M (2002) Microelectron Eng 61–62:33–40CrossRefGoogle Scholar
  8. 8.
    Douvas A, Argitis P, Diakoumakos CD, Misiakos K, Dimotikali D, Kakabakos SE (2001) J Vac Sci Technol B 19:2820–2824CrossRefGoogle Scholar
  9. 9.
    He W, Gonsalves KE, Pickett JH, Halberstadt C (2003) Biomacromolecules 4:75–79CrossRefGoogle Scholar
  10. 10.
    Martelé Y, Callewaert K, Naessens K, Daele PV, Baets R, Schacht E (2003) Mater Sci Eng C 23:341–345CrossRefGoogle Scholar
  11. 11.
    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) Langmuir 17:5605–5620CrossRefGoogle Scholar
  12. 12.
    Cefalas AC, Sarantopoulou E, Gogolides E, Argitis P (2000) Microelectron Eng 53:123–126CrossRefGoogle Scholar
  13. 13.
    Cefalas AC, Sarantopoulou E, Argitis P, Gogolides E (1999) Appl Phys A 69:S929-S933CrossRefGoogle Scholar
  14. 14.
    Lippert T, Dickinson JT (2003) Chem Rev 103:453–486CrossRefGoogle Scholar
  15. 15.
    Kakabakos SE, Christopoulos TK, Diamandis EP (1992) Clin Chem 38:338–342Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Antonios M. Douvas
    • 1
  • Panagiota S. Petrou
    • 2
  • Sotirios E. Kakabakos
    • 2
  • Konstantinos Misiakos
    • 1
  • Panagiotis Argitis
    • 1
  • Evagelia Sarantopoulou
    • 3
  • Zoe Kollia
    • 3
  • Alkiviadis C. Cefalas
    • 3
  1. 1.Institute of MicroelectronicsNCSR “Demokritos”AthensGreece
  2. 2.Institute of Radioisotopes and Radiodiagnostic ProductsNCSR “Demokritos”AthensGreece
  3. 3.Theoretical and Physical Chemistry InstituteNational Hellenic Research Foundation, NHRFAthensGreece

Personalised recommendations