Analytical and Bioanalytical Chemistry

, Volume 381, Issue 4, pp 833–838 | Cite as

Electrochemical DNA sensing based on gold nanoparticle amplification

Original Paper

Abstract

A hybridization signal-amplified method based on a gold nanoparticle-supported DNA sequence for electrochemical DNA sensing has been investigated by cyclic voltammetry, differential-pulse voltammetry, and atomic-force microscopy (AFM). Quantitative analysis showed that the peak current increment (ΔIp) is linearly dependant on the concentration of the gold nanoparticle-supported DNA sequence Au2 over the range 0.51–8.58 pmol L−1. AFM results indicated that the extent of surface hybridization was dependent on the concentration of the gold-nanoparticle-supported DNA sequence. Moreover, a new pair of peaks, which might arise from the special configuration of the gold-nanoparticle-supported DNA sequence, appeared in the cyclic voltammogram after hybridization. Although quite sensitive, this DNA sensing surface was not easily regenerated, so this kind of amplified method was suitable for disposable DNA sensors and chip-based gene diagnosis sensors.

Keywords

Gold nanoparticle Electrochemical DNA sensing Nanoparticle amplification AFM 

References

  1. 1.
    Paleček E, Fojta M (2001) Anal Chem 73: 75Google Scholar
  2. 2.
    Pividori MI, Merkoci A, Alegret S (2000) Biosens Bioelectron 15: 291CrossRefGoogle Scholar
  3. 3.
    Patolsky F, Lichtenstein A, Willner I (2000) Angew Chem Int Ed 39: 940CrossRefGoogle Scholar
  4. 4.
    Taton TA, Mirkin CA, Letsinger RL (2000) Science 289: 1757CrossRefPubMedGoogle Scholar
  5. 5.
    Park S-J, Taton TA, Mirkin CA (2002) Science 295: 1503CrossRefPubMedGoogle Scholar
  6. 6.
    Taton TA, Lu G, Mirkin CA (2001) J Am Chem Soc 123: 5164CrossRefPubMedGoogle Scholar
  7. 7.
    Ihara T, Nakayama M, Murara M, Nakano K, Meada M (1997) Chem Commun 1609Google Scholar
  8. 8.
    Millan KM, Saraullo A, Mikkelsen SK (1994) Anal Chem 66: 2943Google Scholar
  9. 9.
    Lucarelli F, Marrazza G, Turner APF, Mascini M (2004) Biosens Bioelectron 19: 515CrossRefGoogle Scholar
  10. 10.
    Homs WCI (2002) Anal Lett 35: 1875Google Scholar
  11. 11.
    Drummond TG, Hill MG, Barton JK (2003) Nat Biotech 21: 1192CrossRefGoogle Scholar
  12. 12.
    Garnier F, Korri-Youssoufi HK, Srivastava P, Mandrand B, Delair T (1999) Synthetic Metals 100: 89CrossRefGoogle Scholar
  13. 13.
    Reichert J, Csáki A, M Köhler Fritzsche W (2000) Anal Chem 72: 6025CrossRefGoogle Scholar
  14. 14.
    Caruso F, Rodda E, Furlong DN, Niikura K, Okahata Y (1997) Anal Chem 69: 2043CrossRefGoogle Scholar
  15. 15.
    Peterlinz KA, Georgiadis RM, Herne TM, Tarlov MJ (1997) J Am Chem Soc 119: 3401CrossRefGoogle Scholar
  16. 16.
    Jordan CE, Frutos AG, Theil AJ, Corn RM (1997) Anal Chem 69: 4939CrossRefGoogle Scholar
  17. 17.
    Guedon P, Livache T, Martin F, Fr Lesber, An Roget (2000) Anal Chem 72: 6003CrossRefGoogle Scholar
  18. 18.
    Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Anal Chem 73: 1CrossRefPubMedGoogle Scholar
  19. 19.
    Takenaka S, Yamashita K, Takagi M, Uto Y, Kondo H (2000) Anal Chem 72: 1334CrossRefGoogle Scholar
  20. 20.
    Steel AB, Herne TM, Tarlov MJ (1998) Anal Chem 70: 4670CrossRefGoogle Scholar
  21. 21.
    Levicky R, Herne TM, Tarlov MJ, Satija SK (1998) J Am Chem Soc 120: 9787CrossRefGoogle Scholar
  22. 22.
    Strother T, Cai W, Zhao X, Hamers RJ, Smith LM (2000) J Am Chem Soc 122: 1205CrossRefGoogle Scholar
  23. 23.
    Bamdad C (1998) Biophys J 75: 1997Google Scholar
  24. 24.
    Boncheva M, Scheibler L, Lincoln P, Vogel H, Akerman B (1999) Langmuir 15:4317CrossRefGoogle Scholar
  25. 25.
    Hashimoto K, Ito K, Ishimori Y (1994) Anal Chem 66: 3830Google Scholar
  26. 26.
    Alfonta L, Singh AK, Willner I (2001) Anal Chem 73: 91CrossRefGoogle Scholar
  27. 27.
    Bardea A, Parolsky F, Dagan A, Willner I (1999) Chem Commun 21Google Scholar
  28. 28.
    Authier L, Grossiord C, Brossier P (2001) Anal Chem 73: 4450CrossRefGoogle Scholar
  29. 29.
    Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M (2003) Anal Chem 75: 2181CrossRefGoogle Scholar
  30. 30.
    Pividori MI, Alegret S (2003) Analytical Letters 36: 1669CrossRefGoogle Scholar
  31. 31.
    Wang HS, Ju HX, Chen HY (2002) Anal Chim Acta 461: 243CrossRefGoogle Scholar
  32. 32.
    Pividori MI, Merkoci A, Alegret S (2003) Biosens Bioelectron 19: 473CrossRefGoogle Scholar
  33. 33.
    Schilt AA (1969) Analytical applications of 1,10-phenanthroline and related compounds. Pergamon Press, OxfordGoogle Scholar
  34. 34.
    Frens G (1973) Nat Phys Sci 241: 20Google Scholar
  35. 35.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382: 607CrossRefPubMedGoogle Scholar
  36. 36.
    Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120: 1959CrossRefGoogle Scholar
  37. 37.
    Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) Anal Chem 72: 5535CrossRefGoogle Scholar
  38. 38.
    Pang DW, Abruña HD (1998) Anal Chem 70: 3160CrossRefGoogle Scholar
  39. 39.
    Zhang ZL, Pang DW, Zhang RY, Yan JW, Mao BW, Qi YP (2002) Bioconj Chem 13: 104CrossRefGoogle Scholar
  40. 40.
    Ceres DM, Barton JK (2003) J Am Chem Soc 125: 14964CrossRefGoogle Scholar
  41. 41.
    Wang J, Li JH, Baca AJ, Hu JB, Zhou FM, Yan W, Pang DW (2003) Anal Chem 75: 3941CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanP. R. China
  2. 2.Baker Laboratory, Department of Chemistry and Chemical BiologyCornell UniversityUSA

Personalised recommendations