Analytical and Bioanalytical Chemistry

, Volume 381, Issue 4, pp 979–985 | Cite as

A comparison of different types of gold–carbon composite electrode for detection of arsenic(III)

  • Andrew O. Simm
  • Craig E. Banks
  • Shelley J. Wilkins
  • Nikos G. Karousos
  • James Davis
  • Richard G. Compton
Original Paper

Abstract

A study has been conducted using abrasively modified basal and edge-plane graphite, carbon-paste, and carbon–epoxy electrodes to create gold–carbon composite electrodes. Using either nano or micro-sized gold particles their suitability for use in detecting arsenic(III) is assessed. It was found that gold arrays prepared from micron-sized particles gave the best performance for arsenic detection. In particular micron arrays produced in carbon-paste electrodes with an easily renewable surface work well for detection of arsenic, producing a detection limit of 5(±2)×10−9 mol L−1, with a high sensitivity of 10(±0.1) A mol−1 L.

Keywords

Arsenic(III) Carbon-paste electrodes Anodic stripping voltammetry Gold microarrays Gold nanoarrays 

References

  1. 1.
    Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Talanta 58:3Google Scholar
  2. 2.
    Giger W, Berg M, Pham HV, Duong HA, Tran HC, Cao TH, Schertenleib R (2003) Chimia 57:529Google Scholar
  3. 3.
    Mandal BK, Suzuki KT (2002) Talanta 58:201CrossRefGoogle Scholar
  4. 4.
    Kinniburgh DG, Kosmus W (2002) Talanta 58:165Google Scholar
  5. 5.
    Bissen M, Frimmel FH, Christ AG, Aesch S (2003) Acta Hydrochim Hydrobiol 31:9Google Scholar
  6. 6.
    Bissen M, Frimmel FH, Christ AG, Aesch S (2003) Acta Hydrochim Hydrobiol 31:97Google Scholar
  7. 7.
    Smith AH, Lingas EO, Rahman M (2000) Bull World Health Organ 78:1093PubMedGoogle Scholar
  8. 8.
    Feeney R, Kounaves SP (2002) Talanta 58:23Google Scholar
  9. 9.
    Alam MGM, Allinson G, Stagnitti F, Tanaka A, Westbrooke M (2002) Int J Environ Health Res 12:236CrossRefGoogle Scholar
  10. 10.
    Rasul AB, Munir AKM, Hossain ZA, Khan AH, Alauddin M, Hussam A (2002) Talanta 58:33Google Scholar
  11. 11.
  12. 12.
    Fujiwara K, Tsubota H, Kumamaru T (1991) Anal Sci 7(Suppl Proc Int Congr Anal Sci 1991 Pt 2) 7:1085Google Scholar
  13. 13.
    Gong Z, Lu X, Ma M, Watt C, Le XC (2002) Talanta 58:77CrossRefGoogle Scholar
  14. 14.
    Raman B, Shinde VM (1987) Anal Lett 20:1029Google Scholar
  15. 15.
    Story WC, Caruso JA, Heitkemper DT, Perkins L (1992) J Chromatogr Sci 30:427PubMedGoogle Scholar
  16. 16.
    Shum SCK, Neddersen R, Houk RS (1992) Analyst 117:577PubMedGoogle Scholar
  17. 17.
    Hung DQ, Nekrassova O, Compton RG (2004) Talanta 64:269Google Scholar
  18. 18.
    Franesconi KA, Kuehnelt D (2004) Analyst 129:373PubMedGoogle Scholar
  19. 19.
    Gutzeit H (1879) Pharm Zeit 24:263Google Scholar
  20. 20.
    Greschonig H, Irgolic KJ (1997) Arsenic exposure and health effects. Chapman and Hall, London, p 112Google Scholar
  21. 21.
    Forsberg G, O’Laughlin JW, Megargle RG (1975) Anal Chem 47:1586Google Scholar
  22. 22.
    Kryukova TA (1940) Zavodskaya Laboratoriya 9:950Google Scholar
  23. 23.
    Cozzi D, Vivarelli S (1951) Anal Chim Acta 5:215Google Scholar
  24. 24.
    Susic M, Pjescic M (1968) Glasnik Hemijskog Drustva Beograd 33:303Google Scholar
  25. 25.
    Li H, Smart RB (1996) Anal Chim Acta 325:25Google Scholar
  26. 26.
    Brainina K, Neyman E (1993) Chemical analysis: a series of monographs on analytical chemistry and its applications. Wiley, New YorkGoogle Scholar
  27. 27.
    Prakash R, Srivastava RC, Seth PK (2003) Electroanalysis 15:1410Google Scholar
  28. 28.
    Sun Y-C, Mierzwa J, Yang M-H (1997) Talanta 44:1379Google Scholar
  29. 29.
    Huang H, Dasgupta PK (1999) Anal Chim Acta 380:27Google Scholar
  30. 30.
    Simm AO, Banks CE, Compton RG (2004) Electroanalysis DOI: 10.1002/elan200403110
  31. 31.
    Simm AO, Banks CE, Compton RG (2004) Anal Chem 76:5051PubMedGoogle Scholar
  32. 32.
    Feeney R, Kounaves SP (2000) Anal Chem 72:2222PubMedGoogle Scholar
  33. 33.
    Tomčík P, Jursa S, Mesaros S, Bustin D (1997) J Electroanal Chem 423:115CrossRefGoogle Scholar
  34. 34.
    Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anal Chem 76:5924PubMedGoogle Scholar
  35. 35.
    Salimi A, Hyde ME, Banks CE, Compton RG (2004) Analyst 129:9Google Scholar
  36. 36.
    Zen J, Chen P, Kumar AS (2003) Anal Chem 75:6017PubMedGoogle Scholar
  37. 37.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG (2004) Chem Commun DOI:10.1039/B413177K
  38. 38.
    Ju H, Liu S, Ge B, Lisdat F, Scheller FW (2002) Electroanalysis 14:141Google Scholar
  39. 39.
    Lawrence NS, Thompson M, Davis J, Jang L, Jones T, Compton RG (2002) Chem Commun 21(10):1028CrossRefGoogle Scholar
  40. 40.
    Švancara I, Vytřas K, Bobrowski A, Kalcher K (2001) Talanta 58:45CrossRefGoogle Scholar
  41. 41.
    Mooring L, Karousos N, Livingstone C, Davis J, Wildgoose GG, Wilkins SJ, Compton RG (2004) Sens Actuators B (in press)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Andrew O. Simm
    • 1
  • Craig E. Banks
    • 1
  • Shelley J. Wilkins
    • 2
  • Nikos G. Karousos
    • 3
  • James Davis
    • 3
  • Richard G. Compton
    • 1
  1. 1.Physical and Theoretical Chemistry LaboratoryOxford UniversityOxfordUK
  2. 2.Department of MaterialsOxford UniversityOxfordUK
  3. 3.Chemistry DepartmentUniversity of SurreyGuildfordUK

Personalised recommendations