Analytical and Bioanalytical Chemistry

, Volume 381, Issue 1, pp 141–155 | Cite as

Direct optical sensors: principles and selected applications

  • Guenter GauglitzEmail author


In the field of bio and chemosensors a large number of detection principles has been published within the last decade. These detection principles are based either on the observation of fluorescence-labelled systems or on direct optical detection in the heterogeneous phase. Direct optical detection can be measured by remission (absorption of reflected radiation, opt(r)odes), by measuring micro-refractivity, or measuring interference. In the last case either Mach–Zehnder interferometers or measurement of changes in the physical thickness of the layer (measuring micro-reflectivity) caused, e.g., by swelling effects in polymers (due to interaction with analytes) or in bioassays (due to affinity reactions) also play an important role. Here, an overview of methods of microrefractometric and microreflectometric principles is given and benefits and drawbacks of the various approaches are demonstrated using samples from the chemo and biosensor field. The quality of sensors does not just depend on transduction principles but on the total sensor system defined by this transduction, the sensitive layer, data acquisition electronics, and evaluation software. The intention of this article is, therefore, to demonstrate the essentials of the interaction of these parts within the system, and the focus is on optical sensing using planar transducers, because fibre optical sensors have been reviewed in this journal only recently. Lack of selectivity of chemosensors can be compensated either by the use of sensor arrays or by evaluating time-resolved measurements of analyte/sensitive layer interaction. In both cases chemometrics enables the quantification of analyte mixtures. These data-processing methods have also been successfully applied to antibody/antigen interactions even using cross-reactive antibodies. Because miniaturisation and parallelisation are essential approaches in recent years, some aspects and current trends, especially for bio-applications, will be discussed. Miniaturisation is especially well covered in the literature.


Optical Chemosensing Biosensing Transducer Application 



For long years of support of his research the author has to thank the Deutschen Forschungsgemeinschaft, the Fond der Chemischen Industrie, the BMBF, the Arbeitsgemeinschaft Industrieller Forschung, the Deutsche Bundesstiftung Umwelt, some European funding and much industrial cooperation. Details of the funding is acknowledged in the different publications cited. The author also wants to thank all his coworkers, cited and not cited, for work achieved, and, especially, Dr Martin Mehlmann for checking the manuscript.


  1. 1.
    Marazela MD, Morreno-Bondi MC (2002) Anal Bioanal Chem 372:664CrossRefPubMedGoogle Scholar
  2. 2.
    Göpel W, Hesse J, Zemel JN (1992) Sensors, a comprehensive survey, vol I–VIII. VCH, WeinheimGoogle Scholar
  3. 3.
    Bilitewski U, Turner A (eds) (2000) Biosensors in environmental monitoring. Harwood Academic Publishers, AmsterdamGoogle Scholar
  4. 4.
    Scheller FW, Schubert F, Fedrowitz J (eds) (1996) Frontiers of biosensors I+II. Birkhäuser Verlag, BaselGoogle Scholar
  5. 5.
    Lübbers DW, Opitz N (1983) Sens Actuators B 4:641CrossRefGoogle Scholar
  6. 6.
    Gauglitz G, Reichert M (1992) Sens Actuators B 6:83CrossRefGoogle Scholar
  7. 7.
    Wolfbeis O (2004) Anal Chem 76:3269CrossRefPubMedGoogle Scholar
  8. 8.
    Wolfbeis OS (ed) (1992) Fluorescence spectroscopy: new methods and applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. 9.
    Wolfbeis OS, Boisdé GE, Gauglitz G (1996) Sensors, vol II, part I. In: Baltes H, Goepel W, Hesse J (eds) Weinheim, p 573Google Scholar
  10. 10.
    Draxler S, Lippitsch ME (1996) Appl Optics 35:4117Google Scholar
  11. 11.
    Gauglitz G (1996) Sensors, update vol I. In: Baltes H, Goepel W, Hesse J (eds) Weinheim, p 1Google Scholar
  12. 12.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York, p 298Google Scholar
  13. 13.
    Weber G (1966) Hercules DM (ed) Fluorescence and phosphorescence analysis. Wiley, New York, p 217Google Scholar
  14. 14.
    Rigler R (1993) Eur Biophys 22:169Google Scholar
  15. 15.
    Hecht E, Zajak A (2003) Optics. Addison-Wesley, ReadingGoogle Scholar
  16. 16.
    Brecht A, Gauglitz G, Kraus G, Nahm W (1993) Sens Actuators B 11:21CrossRefGoogle Scholar
  17. 17.
    Reichl D, Krage R, Krummel C, Gauglitz G (2000) Appl Spectrosc 54:583CrossRefGoogle Scholar
  18. 18.
    Azzam RMA, Bahara NM (1998) Ellipsometry and polarized light. North HollandGoogle Scholar
  19. 19.
    Arwin H, Aspnes DE (1986) Thin Solid Films 138:195CrossRefGoogle Scholar
  20. 20.
    Mutschler T, Kieser B, Frank R, Gauglitz G (2002) Anal Bioanal Chem 374:658CrossRefPubMedGoogle Scholar
  21. 21.
    Heideman RG, Kooyman RPH, Greve J (1993) Sens Actuators B B:209CrossRefGoogle Scholar
  22. 22.
    Brandenburg A, Henninger R (1994) Appl Optics 33:5941Google Scholar
  23. 23.
    Brandenburg A, Hinkov V, Konz W (1992) Sensors, vol. 6. In: Göpel W, Hesse J, Zemel JN (eds) VCH, Weinheim, p 399Google Scholar
  24. 24.
    Clerc D, Lukosz W (1994) Sens Actuators B 19:581CrossRefGoogle Scholar
  25. 25.
    Kunz RE, Edlinger J, Curtis BJ, Gale MT, Kempen LU, Rudigier H, Schuetz H (1994) Proc SPIE Int Soc Opt Eng 2068:313Google Scholar
  26. 26.
    Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) Biosens Bioelectron 8:347CrossRefGoogle Scholar
  27. 27.
    Liedberg B, Nylander C, Lundström I (1983) Sens Actuators B 4:299CrossRefGoogle Scholar
  28. 28.
    Piraud C, Mwarania E, Wylangowski G, Wilkinson J, O’Dwyer K, Schiffrin DJ (1992) Anal Chem 64:651Google Scholar
  29. 29.
    Lakowicz JR (2004) Anal Biochem 324(2):153CrossRefPubMedGoogle Scholar
  30. 30.
    Othonos A (1997) Rev Sci Instr 68:4309CrossRefGoogle Scholar
  31. 31.
    Lukosz W, Stamm C (1991) Sens Actuators A 25:185CrossRefGoogle Scholar
  32. 32.
    Nellen PhM, Lukosz W (1993) Biosens Bioelectron 8:129CrossRefGoogle Scholar
  33. 33.
    Fattinger C, Mangold C, Gale MT, Schuetz H (1995) Opt Eng 34:2744Google Scholar
  34. 34.
    Kunz RE (1991) Proc SPIE Int Soc Opt Eng 1587:98Google Scholar
  35. 35.
  36. 36.
    Homola J, Yee S, Myszka D (2002) In: Ligler FS, Rowe T, Chris A (eds) Optical biosensors present and future. Elsevier, Amsterdam, p 207Google Scholar
  37. 37.
    Homola J, Yee SS, Gauglitz G (1999) Sens Actuators B 54:3CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Rich RL, Myszka DG (2000) J Mol Recognit 13:388CrossRefPubMedGoogle Scholar
  40. 40.
    Van Der Merwe, Anton P (2001) Surface plasmon resonance, in protein-ligand interactions: hydrodynamics and calorimetry. Oxford, London, p 137Google Scholar
  41. 41.
    Davis TM, Wilson WD (2001) Methods Enzymol 340:22PubMedGoogle Scholar
  42. 42.
    Sadana A (2001) Biotech Genetic Eng Rev 18:29Google Scholar
  43. 43.
    Kinning T, Edwards P, In: Ligler FS, Rowe T, Chris A (eds) Optical biosensors. Elsevier, Amsterdam, p 253Google Scholar
  44. 44.
    Voros J, Ramsden JJ, Scucs G, Szendro I, De Paul SM, Textor M, Spencer ND (2002) Biomaterials 23(17):3699CrossRefPubMedGoogle Scholar
  45. 45.
    Kuhlmeier D, Rodda E, Kolarik LO, Furlong DN, Bilitewski U (2003) Biosens Bioelectron 18:925CrossRefPubMedGoogle Scholar
  46. 46.
    Santos JL, Ferreira LA (2002) Fibre Bragg grating interrogation techniques. In: Handbook of optical fibre sensing technology. Wiley, Chichester, p 379Google Scholar
  47. 47.
    Knoll W (2004) Bunsenmagazin 3:69Google Scholar
  48. 48.
    Liebermann T, Knoll W (2000) Colloids Surfaces A 171:115CrossRefGoogle Scholar
  49. 49.
    Klotz A, Brecht A, Barzen C, Gauglitz G, Harris RD, Quigley QR, Wilkinson JS (1998) Sens Actuators B 51:181CrossRefGoogle Scholar
  50. 50.
    Förster Th (1951) Fluoreszenz Organischer Verbindungen. Vandenhoek und Ruprecht, GöttingenGoogle Scholar
  51. 51.
    Mere L, Bennett T, Coassin P, England P, Hamman B, Rink T, Zimmerman S, Negeulescu P (1999) Drug Discovery Today 4:363CrossRefPubMedGoogle Scholar
  52. 52.
    Seidel M, Dankbar D (2004) Anal Bioanal Chem 379:904CrossRefPubMedGoogle Scholar
  53. 53.
    Baldini F, Bracci S (2000) Polymers for optical fiber sensors. In: Osada Y, De Rossi DE (eds) Polymer sensors and actuators. Springer, Berlin Heidelberg New York, p 91Google Scholar
  54. 54.
    Rathgeb F, Gauglitz G (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 2189Google Scholar
  55. 55.
    Tang K, Garetz BA, Green MM, Herman FM (2002) Polymer preprints 43(2):538Google Scholar
  56. 56.
    Lehner MD (1996) Macromolecular chemistry: a textbook for chemists, physicists, material scientists, and process technicians. Birkhäuser Verlag, BaselGoogle Scholar
  57. 57.
    Dieterle F, Belge G, Betsch C, Gauglitz G (2002) Anal Bioanal Chem 374:858CrossRefPubMedGoogle Scholar
  58. 58.
    Birkert O, Haake H-M, Schütz A, Mack J, Brecht A, Jung G, Gauglitz G (2000) Anal Biochem 282:200CrossRefPubMedGoogle Scholar
  59. 59.
    Raitza M, Herold M, Ellwanger A, Gauglitz G, Albert K (2000) Macromol Chem Phys 201:825CrossRefGoogle Scholar
  60. 60.
    Löfas L, Johnsson B (1990) J Chem Soc Chem Commun 1526Google Scholar
  61. 61.
    Feldmann K, Hähner G, Spencer ND, Harder P, Grunze M (1999) J Am Chem Soc 121:10134CrossRefGoogle Scholar
  62. 62.
    Piehler J, Brecht A, Valiokas R, Liedberg B, Gauglitz G (2000) Biosens Bioelectron 15:473CrossRefPubMedGoogle Scholar
  63. 63.
    Gershon PD, Khilko S (1995) J Immun Methods 183:65CrossRefGoogle Scholar
  64. 64.
    Tien HT (1985) Prog Surf Sci 19:169CrossRefGoogle Scholar
  65. 65.
    Park J, Groves WA, Zellers ET (1999) Anal Chem 71:3877CrossRefPubMedGoogle Scholar
  66. 66.
    Lehn J-M, Ball P (2000) Supramolecular chemistry. In: Hall N (ed) New chemistry. Cambridge University Press, London, p 300Google Scholar
  67. 67.
    Garnier F (2000) Biomed chem. Wiley, New York, p 349Google Scholar
  68. 68.
    Dickert FL, Schuster O (1995) Mikrochim Acta 119:55Google Scholar
  69. 69.
    Dominik A, Roth HJ, Schierbaum KD, Goepel W (1994) Supramol Sci 1:11Google Scholar
  70. 70.
    Schurig V, Grosenick H (1994) J Chromatogr A 666:617Google Scholar
  71. 71.
    Jung, Hofstetter H, Feiertag S, Stoll D, Hofstetter O, Wiemüller K-H (1996) Angew Chem Int Ed Engl 35:2148Google Scholar
  72. 72.
    Bodenhöfer K, Hierlemann A, Seemann J, Gauglitz G, Koppenhoefer B, Göpel W (1997) Nature 577:577Google Scholar
  73. 73.
    Kieser B, Fietzek C, Schmidt R, Belge G, Weimar U, Schuring V, Gauglitz G (2002) Anal Chem 74:3005CrossRefPubMedGoogle Scholar
  74. 74.
    Wang J (1999) Curr Issue Mol Biol 1(2):117Google Scholar
  75. 75.
    Koch T (2003) J Phys Condensed Matter 15(18):S1861Google Scholar
  76. 76.
    Demidov VV (2002) Trends Biotechnol 21(1):4CrossRefGoogle Scholar
  77. 77.
    Sinner E, Knoll W (2001) Curr Opin Chem Biol 5:705CrossRefPubMedGoogle Scholar
  78. 78.
    Richter R, Brisson A Langmuir 19:1632Google Scholar
  79. 79.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495CrossRefPubMedGoogle Scholar
  80. 80.
    Haupt K (2003) Anal Chem 75(17):376APubMedGoogle Scholar
  81. 81.
    Diaz-Garcia ME, Badia R (2004) Molecularly imprinted polymers for optical sensing devices. In: Springer series on chemical sensors and biosensors (optical sensors), p 35Google Scholar
  82. 82.
    Kindschy LM, Alocilja EC (2004) Trans ASAE 47(4):1375Google Scholar
  83. 83.
    Ye L, Haupt K (2004) Anal Bioanal Chem 378(8):1887CrossRefPubMedGoogle Scholar
  84. 84.
    Mirsky VM, Hirsch T, Piletsky S, Wolfbeis OS (1999) Angew Chem Int Ed Engl 38:1108CrossRefGoogle Scholar
  85. 85.
    Kumpf M, Gauglitz G (2003) Bestimmung der Assoziationsratenkonstanten in homogener Phase mittels reflektometrischer Interferenzspektroskopie. In: Proceedings of the biosensorsymposium, PotsdamGoogle Scholar
  86. 86.
    Eddowes MJ (1987) Biosens 3:1CrossRefGoogle Scholar
  87. 87.
    Willard D, Proll G, Reder S, Gauglitz G (2003) Environ Sci Pollut Res 10:188Google Scholar
  88. 88.
    Schobel U, Coille I, Brecht A, Steinwand M, Gauglitz G (2001) Anal Chem 73:5172PubMedGoogle Scholar
  89. 89.
    Schobel U, Barzen C, Gauglitz G (2000) Fresenius J Anal Chem 366:646PubMedGoogle Scholar
  90. 90.
    Reder S, Dieterle F, Jansen H, Alcock S, Gauglitz G (2003) Biosens Bioelectron 19:447CrossRefPubMedGoogle Scholar
  91. 91.
    Seidel M, Gauglitz G (2003) TrAC Trend Anal Chem 22:385Google Scholar
  92. 92.
    Kieser B, Dieterle F, Gauglitz G (2002) Anal Chem 74:4781CrossRefPubMedGoogle Scholar
  93. 93.
    Dieterle F, Kieser B, Gauglitz G (2003) Chemometr Intell Lab 65:67CrossRefGoogle Scholar
  94. 94.
    Mozsolits H, Aguilar MI (2002) Biopolymers 66(1):3CrossRefPubMedGoogle Scholar
  95. 95.
    Kaspar S (2000) Dissertation, Tübingen. pdf-file: http://w210.ub.uni-tuebingen. de/dbt/volltexte/2000/197/pdf/Dissertation_kaspar.pdf
  96. 96.
    Yan HM, Kraus G, Gauglitz G (1995) Anal Chim Acta 312:1CrossRefGoogle Scholar
  97. 97.
    Kaspar S, Rathgeb F, Nopper N, Gauglitz G (1999) Fresenius J Anal Chem 363:193CrossRefGoogle Scholar
  98. 98.
    Belge G, Beyerlein D, Betsch C, Eichhorn K-J, Gauglitz G, Grundke K, Voit B (2002) Anal Bioanal Chem 374:403CrossRefPubMedGoogle Scholar
  99. 99.
    Busche S, Kasper M, Belge G, Dieterle F, Gauglitz G (2004) Meas Sci Technol 15(3):540CrossRefGoogle Scholar
  100. 100.
    Busche S, Dieterle F, Kieser B, Gauglitz G (2003) Sensor Actuators B 89:192CrossRefGoogle Scholar
  101. 101.
    Leipert D, Nopper D, Bauser M, Gauglitz G, Jung G (1998) Angew Chem Int Ed 37:3308CrossRefGoogle Scholar
  102. 102.
    Nopper D, Lammershop O, Wulff G, Gauglitz G (2003) Anal Bioanal Chem 377(4):608CrossRefPubMedGoogle Scholar
  103. 103.
    Coille I, Reder S, Bucher S, Gauglitz G (2002) Biomol Eng 18:273Google Scholar
  104. 104.
    Piehler J, Brecht A, Gauglitz G (1996) Anal Chem 68:139CrossRefGoogle Scholar
  105. 105.
    Haake H-M, Tünnemann R, Brecht A, Austel V, Jung G, Gauglitz G (2002) Anal Biochem 300:107CrossRefPubMedGoogle Scholar
  106. 106.
    Tünnemann R, Mehlmann M, Süssmuth RD, Bühler B, Pelzer S, Wohlleben W, Fiedler H-P, Wiesmüller K-H, Gauglitz G, Jung G (2001) Anal Chem 73:4313CrossRefPubMedGoogle Scholar
  107. 107.
    Gauglitz G (2000) Curr Opin Chem Biol 4:351CrossRefPubMedGoogle Scholar
  108. 108.
    Birkert O, Tünnemann R, Jung G, Gauglitz G (2002) Anal Chem 74:834CrossRefPubMedGoogle Scholar
  109. 109.
    Kröger K, Bauer J, Fleckenstein F, Rademann J, Jung G, Gauglitz G (2002) Biosens Bioelectron 17:937CrossRefPubMedGoogle Scholar
  110. 110.
    Birkert O, Gauglitz G (2002) Anal Bioanal Chem 372:141CrossRefPubMedGoogle Scholar
  111. 111.
    Sauer M, Brecht A, Charisse K, Stemmler I, Gauglitz G, Bayer E (1999) Anal Chem 71:2850CrossRefPubMedGoogle Scholar
  112. 112.
    Tschmelak J, Proll G, Riedt J, Kaiser J, Kraemmer P, Bárzaga L, Wilkinson JS, Hua P, Hole JP, Nudd R, Jackson M, Abuknesha R, Barceló D, Rodriguez-Mozaz S, López de Alda MJ, Sacher F, Stien J, Slobodník J, Oswald P, Kozmenko H, Korenková E, Tóthová L, Krascsenits Z, Gauglitz G (2004) Biosens Bioelectron (accepted)Google Scholar
  113. 113.
    Jones JDC (2002) In: Lopez-Giguera JM (ed) Handbook of optical fibre sensing technology. Wiley, Chichester, p 227Google Scholar
  114. 114.
    Baldini F, Mignani AG. In: Lopez-Giguera JM (ed) Handbook of optical fibre sensing technology. Wiley, Chichester, p 705Google Scholar
  115. 115.
    Barker SLR, Clark HA, Kopelman R (2002) In: Law WT, Akmal N, Usmani AM (eds) Biomedical diagnostic science and technology. Marcel Dekker Inc., New York, p 139Google Scholar
  116. 116.
    Murphy CJ (2002) Anal Chem 74:520APubMedGoogle Scholar
  117. 117.
    Campbell DP, McCloskey CJ (2002) In: Ligler FS, Rowe T, Chris A (eds) Optical biosensors. Elsevier, Amsterdam, p 277Google Scholar
  118. 118.
    Spaeth K, Kraus G, Gauglitz G (1997) Fresenius Anal Chem 357:292CrossRefGoogle Scholar
  119. 119.
    Spaeth K, Gauglitz G (1998) Mat Sci Eng C5:187CrossRefGoogle Scholar
  120. 120.
    Gauglitz G, Ingenhoff J (1991) Ber Bunsen Phys Chem 95:1558Google Scholar
  121. 121.
    Fabricius N, Gauglitz G, Ingenhoff J (1992) Sens Actuators B 7:672CrossRefGoogle Scholar
  122. 122.
    Gauglitz G, Ingenhoff J (1993) Sens Actuators B 11:207CrossRefGoogle Scholar
  123. 123.
    Haug M, Schierbaum KD, Gauglitz G, Göpel W (1993) Sens Actuators B 11:383CrossRefGoogle Scholar
  124. 124.
    Nopper D, Gauglitz G (1998) Fresenius J Anal Chem 362:114CrossRefGoogle Scholar
  125. 125.
    Kieser B, Pauluth D, Gauglitz G (2001) Anal Chim Acta 434:231CrossRefGoogle Scholar
  126. 126.
    Franks NP, Lieb WR (1994) Nature 367:607CrossRefPubMedGoogle Scholar
  127. 127.
    Dickert FL, Zwissler GK (1993) Bunsenges Phys Chem 97(2):184Google Scholar
  128. 128.
    Filippini C, Sonnleitner B, Fiechter A, Bradley J, Schmid R (1991) J Biotechnol 18:153CrossRefPubMedGoogle Scholar
  129. 129.
    Mehlmann M, Garvin A, Steinwand M, Gauglitz G (2004) Coupling of reflectometric interference spectroscopy with MALDI-MS. Anal Bioanal Chem (submitted)Google Scholar
  130. 130.
    Haake H-M, Schütz A, Gauglitz G (2000) Fresenius J Anal Chem 366:576CrossRefPubMedGoogle Scholar
  131. 131.
    Piehler J, Brecht A, Giersch T, Kramer K, Hock B, Gauglitz G (1997) Sens Actuators B 39:432CrossRefGoogle Scholar
  132. 132.
    Rothmund M, Schütz A, Brecht A, Gauglitz G, Berthel G, Graefe D (1997) Fresenius J Anal Chem 359:15CrossRefGoogle Scholar
  133. 133.
    Ganesan A (1998) Angew Chem 110:2989CrossRefGoogle Scholar
  134. 134.
    Rademann J, Groetli M, Meldal M, Bock K (1999) J Am Chem Soc 121:5459CrossRefGoogle Scholar
  135. 135.
  136. 136.
    de Heij B, Steinert C, Sandmaier H, Zengerle R (2003) Sensor Actuators A 103:88CrossRefGoogle Scholar
  137. 137.
    Houston JG, Banks M (1997) Curr Opin Biotechnol 8:734CrossRefPubMedGoogle Scholar
  138. 138.
    Peter R, Meusel M, Grawe F, Katerkamp A, Cammann K, Börchers T (2001) Fresenius J Anal Chem 371:120CrossRefPubMedGoogle Scholar
  139. 139.
    Duveneck G, Pawlak M, Neuschäfer D, Baer E, Budach W, Pieles U, Ehrat M (1997) Sens Actuators B 38:88CrossRefGoogle Scholar
  140. 140.
    Sherma J (1995) Anal Chem 67:1RGoogle Scholar
  141. 141.
    Barzen C, Brecht A, Gauglitz G (2002) Biosens Bioelectron 17:289CrossRefPubMedGoogle Scholar
  142. 142.
    Kröger K, Jung A, Reder S, Gauglitz G (2002) Anal Chim Acta 469:37CrossRefGoogle Scholar
  143. 143.
    Ramsay M (1996) Anal Methods Instrum Spec Issue 24Google Scholar
  144. 144.
    Vilkner T, Janasek D, Manz A (2004) Anal Chem 76(12):3373CrossRefPubMedGoogle Scholar
  145. 145.
    Suzuki H (2004) Chem Sens 20:121Google Scholar
  146. 146.
    Sheehan AD, Quinn J, Daly S, Dillon P, O’Kennedy R (2003) Anal Lett 36(3):511Google Scholar
  147. 147.
    Gardeniers JGE, van den Berg A (2004) Anal Bioanal Chem 378(7):1700CrossRefPubMedGoogle Scholar
  148. 148.
    Schasfoort RBM (2004) Expert Rev Proteomics 1(1):123Google Scholar
  149. 149.
    Bühler B, Fröhlich D, Haake H-M, Brecht A, Gauglitz G (2001) TRAC Trend Anal Chem 20(4):186CrossRefGoogle Scholar
  150. 150.
    Piehler J, Brandenburg A, Brecht A, Wagner E, Gauglitz G (1997) Appl Opt 36:6554Google Scholar
  151. 151.
    Hänel C, Gauglitz G (2002) Anal Bioanal Chem 372:91CrossRefPubMedGoogle Scholar
  152. 152.
    Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Anal Bioanal Chem 377(3):469CrossRefPubMedGoogle Scholar
  153. 153.
    Starodub NF, Rebriev AV, Starodub VM (2002) NATO science series, series I: life and behavioural sciences, vol 346, p 391Google Scholar
  154. 154.
    Ahmad A, Zong Q, Rock M, McLean M, Breau A (2004) Anal Biochem 324(2):304PubMedGoogle Scholar
  155. 155.
    Haasnoot W, Bienenmann-öoum M, Kohen F (2003) Anal Chim Acta 483(1-2):171Google Scholar
  156. 156.
    Piehler J, Brecht A, Geckeler KE, Gauglitz G (1996) Biosens Bioelectron 11:579CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical ChemistryUniversity of TuebingenTuebingenGermany

Personalised recommendations