Analytical and Bioanalytical Chemistry

, Volume 381, Issue 2, pp 464–470 | Cite as

Solvent extraction and extraction–voltammetric determination of phenols using room temperature ionic liquid

  • Kristine S. Khachatryan
  • Svetlana V. Smirnova
  • Irina I. Torocheshnikova
  • Natalia V. Shvedene
  • Andrey A. Formanovsky
  • Igor V. Pletnev
Original Paper

Abstract

The phenolic compounds phenol, 4-nitrophenol, 2,4-dinitrophenol, 2,6-dinitrophenol, 1-naphthol, 2-naphthol, and 4-chlorophenol are extracted nearly quantitatively from aqueous solution into the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF6) in molecular form at pH<pKa. Picric acid is extracted efficiently in anionic form. Recovery of pyrocatechol and resorcinol is much lower. The effect of pH, phenol concentration, and volume ratio of aqueous and organic phases were studied. Ionic liquid BMImPF6 is shown to be suitable for extraction–voltammetric determination of phenols without back-extraction or addition of support electrolyte. The electrochemical window of BMImPF6 at various electrodes was determined, and voltammetric oxidation of phenols and reduction of nitrophenols in BMImPF6 was studied.

Keywords

Room temperature ionic liquid Phenols Liquid–liquid extraction Voltammetry 

Notes

Acknowledgements

This work was financially supported by the Russian Foundation for Basic Research (Grant 02-03-32340). The authors are grateful to Dr. M.Yu. Nemilova, Moscow State University, for experimental assistance in voltammetric measurements.

References

  1. 1.
    Grushko Ya (1982) Harmful organic compounds of industrial wastes. Chimia, MoscowGoogle Scholar
  2. 2.
    Lurye Yu (1984) Analytical chemistry of industrial wastes. Chimia, MoscowGoogle Scholar
  3. 3.
    Emerson E-J (1943) Org Chem 4(8):417–428Google Scholar
  4. 4.
    Mohler EF, Jacob LN (1957) Anal Chem 9(29):1369–1374Google Scholar
  5. 5.
    Korenman IM (1970) Photometric analysis. Determination methods of organic compounds. Chimia, MoscowGoogle Scholar
  6. 6.
    Shormanov VK, Fursova IA (1997) Zh Analyt Chimii 3(52):319–323Google Scholar
  7. 7.
    Dmitrienko SG, Medvedeva OM, Ivanov AA, Shpigun OA, Zolotov YA (2002) Anal Chim Acta 469(2):295–301CrossRefGoogle Scholar
  8. 8.
    Demianov PI (1992) Zh Analyt Chimii 12(47):1942–1945Google Scholar
  9. 9.
    Thompson MJ, Ballinger LN, Cross SE, Roberts MS (1996) J Chromatogr B 677(1):117–122Google Scholar
  10. 10.
    Maccrehan CA, Brown-Thomas JM (1987) Anal Chem 59:477–479Google Scholar
  11. 11.
    Carvalho RM, Mello C, Kubota LT (2000) Anal Chim Acta 420(1):109–121CrossRefGoogle Scholar
  12. 12.
    Fulian Q, Compton RG (2000) Analyst 125(3):531–534CrossRefGoogle Scholar
  13. 13.
    Penketh CE (1957) J Appl Chem 7:512–521Google Scholar
  14. 14.
    Mayranovskiy SG, Stradin YaP, Bezugliy VD (1975) Polarography in organic chemistry. Chimia, Moscow, pp 152–158Google Scholar
  15. 15.
    Hagiwara T, Motomizu S (1991) Anal Sci 7:129–135Google Scholar
  16. 16.
    Korenman YaI (1973) Extraction of phenols. Volgo-Vyatsk, GorkiGoogle Scholar
  17. 17.
    Korenman YaI, Niftaliev SI (1993) Zh Prikl Chimii 1(66):172–175Google Scholar
  18. 18.
    Smolskiy GM, Kuchmenko TA (1997) Zh Analyt Chimii 1(52):98–101Google Scholar
  19. 19.
    Korenman YaI, Kalinkina SP, Sukhanov PT et al (1994) Zh Analyt Chimii 11(49):1189–1192Google Scholar
  20. 20.
    Korenman YaI, Yermolaeva TN, Podolina EA (1993) Zh Prikl Chimii 10(66):2300–2304Google Scholar
  21. 21.
    Seddon KR (1996) Kinet Catal 37:693–697Google Scholar
  22. 22.
    Holbrey JD, Seddon KR (1999) J Chem Soc Dalton Trans 2133–2134Google Scholar
  23. 23.
    Welton T (1999) Chem Rev 99:2071–2083CrossRefPubMedGoogle Scholar
  24. 24.
    Olivier-Bourbigou H, Magna L (2002) J Mol Catalysis A Chem 182–183:419–437Google Scholar
  25. 25.
    Fisher T, Sethi A, Welton T, Woolf J (1999) Tetrahedron Lett 40:793–796Google Scholar
  26. 26.
    Armstrong DW, He L, Liu YS (1999) Anal Chem 71:3873–3876CrossRefPubMedGoogle Scholar
  27. 27.
    Poole CF, Kersten BR, Ho SSJ, Coddens ME, Furton KG (1986) J Chromatogr 352:407–425CrossRefGoogle Scholar
  28. 28.
    Armstrong DW, Zhang LK, He L, Gross ML (2001) Anal Chem 73:3679–3686CrossRefPubMedGoogle Scholar
  29. 29.
    Suarez PA, Selbach VM, Dullius JE et al (1997) Electrochim Acta 16(42):2533–2535CrossRefGoogle Scholar
  30. 30.
    Chen PY, Sun IW (1999) Electrochim Acta 45:441–450CrossRefGoogle Scholar
  31. 31.
    Chen PY, Sun IW (2000) Electrochim Acta 45:3163–3170CrossRefGoogle Scholar
  32. 32.
    Endres F, Adebin ShZ (2002) Chem Commun 892–893Google Scholar
  33. 33.
    Compton DL, Laszlo JA (2002) J Electroanal Chem 520:71–78CrossRefGoogle Scholar
  34. 34.
    Carda-Broch S, Berthod A, Armstrong DW (2003) Anal Bioanal Chem 375:191–199PubMedGoogle Scholar
  35. 35.
    Dai S, Ju YH, Barnes CE (1999) J Chem Soc Dalton Trans 1201–1202Google Scholar
  36. 36.
    Smirnova SV, Torocheshnikova II, Formanovsky AA, Pletnev IV (2004) Anal Bioanal Chem 378:1369–1375CrossRefPubMedGoogle Scholar
  37. 37.
    Huddleston JG, Willauer HD, Swatlowski RP et al (1998) Chem Commun 16:1765–1766CrossRefGoogle Scholar
  38. 38.
    Visser AE, Swatloski RP, Rogers RD (2001) Green Chem 3:156–164CrossRefGoogle Scholar
  39. 39.
    Shormanov VK (1965) Zh Prikl Chimii 6(38):1327–1329Google Scholar
  40. 40.
    Serjeant EP, Dempsey B (1979) Ionization constants of organic acids in aqueous solution. Pergamon, OxfordGoogle Scholar
  41. 41.
    Korenman YaI (1992) Distribution coefficients of organic compounds. Spravochnik. Voronezh University, RussiaGoogle Scholar
  42. 42.
    Korenman YaI, Yermolaeva TN, Podolina EA et al (1995) Org React 29:99–101Google Scholar
  43. 43.
    Fuller S, Carlin RT, Long HC, Haworth D (1994) Chem Soc, Chem Commun 299–300Google Scholar
  44. 44.
    Huang JF, Chen PY, Sun IW, Wang SP (2001) Inorg Chim Acta 320:7–11CrossRefGoogle Scholar
  45. 45.
    Dietz ML, Dzielawa JA (2001) Chem Commun 2124–2125Google Scholar
  46. 46.
    Koch VR, Dominey LA, Nanjundiah C, Ondrechen MJ (1996) J Electrochem Soc 143:798Google Scholar
  47. 47.
    Chandrasekaran M, Noel M, Krishnan V (1990) Talanta 7(37):695–699CrossRefGoogle Scholar
  48. 48.
    Vermillon FI, Pearl JA (1964) J Electrochem Soc 12(111):1392–1400Google Scholar
  49. 49.
    Shengshui H, Cuiling X, Gaiping W, Dafu C (2001) Talanta 54:115–123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Kristine S. Khachatryan
    • 1
  • Svetlana V. Smirnova
    • 1
  • Irina I. Torocheshnikova
    • 1
  • Natalia V. Shvedene
    • 1
  • Andrey A. Formanovsky
    • 1
  • Igor V. Pletnev
    • 1
  1. 1.Chemical Department, Division of Analytical ChemistryLomonosov Moscow State UniversityMoscow 119992Russia

Personalised recommendations