Skip to main content
Log in

Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Immobilization of bioactive molecules on the surface of magnetic nanoparticles is of great interest, because the magnetic properties of these bioconjugates promise to greatly improve the delivery and recovery of biomolecules in biomedical applications. Here we present the preparation and functionalization of magnetite (Fe3O4) nanoparticles 20 nm in diameter and the successful covalent conjugation of the enzyme glucose oxidase to the amino-modified nanoparticle surface. Functionalization of the magnetic nanoparticle surface with amino groups greatly increased the amount and activity of the immobilized enzyme compared with immobilization procedures involving physical adsorption. The enzymatic activity of the glucose oxidase-coated magnetic nanoparticles was investigated by monitoring oxygen consumption during the enzymatic oxidation of glucose using a ruthenium phenanthroline fluorescent complex for oxygen sensing. The glucose oxidase-coated magnetite nanoparticles could function as nanometric glucose sensors in glucose solutions of concentrations up to 20 mmol L−1. Immobilization of glucose oxidase on the nanoparticles also increased the stability of the enzyme. When stored at 4°C the nanoparticle suspensions maintained their bioactivity for up to 3 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  2. Tartaj P, Morales MP, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serra CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197

    Article  CAS  Google Scholar 

  3. 3. Gu H, Ho P-L, Tsang KWT, Yu C-W, Xu B (2003) Using biofunctional magnetic nanoparticles to capture gram-negative bacteria at an ultra-low concentration. Chem Commun 1966–1967

    Google Scholar 

  4. Bucak S, Jones DA, Laibinis PE, Hatton A (2003) Protein separations using colloidal magnetic nanoparticles. Biotechnol Prog 19:477–484

    Article  CAS  PubMed  Google Scholar 

  5. Liao M-H, Chen D-H (2002) Preparation and characterization of a novel magnetic nano-adsorbent. J Mater Chem 12:3654–3659

    Article  CAS  Google Scholar 

  6. Tong XD, Xue B, Sun Y (2001) A novel magnetic affinity support for protein adsorption and purification. Biotechnol Prog 17:134–139

    Article  CAS  PubMed  Google Scholar 

  7. Mine Y (1997) Separation of Salmonella enteritidis from experimentally contaminated liquid eggs using a hen IgY immobilized immunomagnetic separation system. J Agric Food Chem 45:3723–3727

    Article  CAS  Google Scholar 

  8. Ugelstad J, Prestvik WS, Stenstad P, Kilaas L, Kvalheim G (1998) Selective cell separation with monosized magnetizable polymer beads. In: Nowak H (ed) Magnetism in medicine. Wiley-VCH, Berlin, pp 471–488

    Google Scholar 

  9. Sonti SV, Bose A (1995) Cell separation using protein A-coated magnetic nanoclusters. J Coll Interface Sci 170:575–585

    Article  CAS  Google Scholar 

  10. Hancock JP, Kemshead JT (1993) A rapid and highly selective approach to cell separations using an immunomagnetic colloid. J Immunol Methods 164:51–60

    Article  CAS  PubMed  Google Scholar 

  11. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    Article  CAS  PubMed  Google Scholar 

  12. Huang S-H, Liao M-H, Chen D-H (2003) Direct binding and characterization of Lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100

    Article  CAS  PubMed  Google Scholar 

  13. Chen D-H, Liao M-H (2002) Preparation and characterization of YADH-bound magnetic nanoparticles. J Mol Catal B Enzyme 16:283–291

    Article  CAS  Google Scholar 

  14. Wang SQ, Yoshimoto M, Fukunaga K, Nakao K (2003) Optimal covalent immobilization of glucose oxidase-containing liposomes for highly stable biocatalyst in bioreactor. Biotechnol Bioeng 83:444–453

    Article  CAS  PubMed  Google Scholar 

  15. Yang XH, Hua L, Gong HQ, Tan SN (2003) Covalent immobilization of an enzyme (glucose oxidase) onto a carbon sol-gel silicate composite surface as a biosensing platform. Anal Chim Acta 478:67–75

    Article  CAS  Google Scholar 

  16. 16. Ying L, Kang ET, Neoh KG (2002) Covalent immobilization of glucose oxidase on microporous membranes prepared from poly(vinylidene fluoride) with grafted poly(acrylic acid) side chains. J Membr Sci 208:361–374

    Article  CAS  Google Scholar 

  17. Shimomura M, Kojima N, Oshima K, Yamauchi T, Miyauchi S (2001) Covalent immobilization of glucose oxidase on film prepared by electrochemical copolymerization of thiophene-3-acetic acid and 3-methylthiophene for glucose sensing. Polym J 33:629–631

    Article  CAS  Google Scholar 

  18. Bautista FM, Campelo JM, Garcia A, Jurado A, Luna D, Marinas JM, Romero AA (2001) Properties of a glucose oxidase covalently immobilized on amorphous AlPO4 support. J Mol Catal B-Enzyme 11:567–577

    Article  CAS  Google Scholar 

  19. Ramanathan K, Pandey SS, Kumar R, Gulati A, Surya A, Murthy N, Malhotra BD (2000) Covalent immobilization of glucose oxidase to Poly(O-Amino benzoic acid) for application to glucose biosensor. J Appl Polym Sci 78:662–667

    Article  CAS  Google Scholar 

  20. Zhang Y-Q, Zhu J, Gu R-A (1999) Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane. Appl Biochem Biotechnol 75:215–233

    Google Scholar 

  21. Li ZF, Kang ET, Neoh KG, Tan KL (1998) Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid. Biomaterials 19:45–53

    Article  CAS  PubMed  Google Scholar 

  22. Kojima K, Yamauchi T, Shimomura M, Miyauchi S (1998) Covalent immobilization of glucose oxidase on poly[1-(2-carboxyethyl)pyrrole] film for glucose sensing. Polymer 39:2079–2082

    Article  CAS  Google Scholar 

  23. Suye S, Kumon Y, Ishigaki A (1998) Immobilization of glucose oxidase on poly-(l-lysine)-modified polycarbonate membrane. Biotechnol Appl Biochem 27:245–248

    CAS  Google Scholar 

  24. Shimomura M, Kikuchi H, Yamauchi T (1996) Covalent immobilization of glucose oxidase on magnetic nanoparticles via graft polymerization of acrylic acid. J M S Pure Appl Chem A33:1687–1697

    CAS  Google Scholar 

  25. Fang M, Grant PS, McShane MJ, Sukhorukov GB, Golub VO, Lvov YM (2002) Magnetic bio/nanoreactor with multilayer shells of glucose oxidase and inorganic nanoparticles. Langmuir 18:6338–6344

    Article  CAS  Google Scholar 

  26. Xu H, Aylott JW, Kopelman R (2002) Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging. Analyst 127:1471–1477

    Article  CAS  PubMed  Google Scholar 

  27. Wang F-H, Yoshitake T, Kim DK, Muhammed M, Bjelke O, Kehr J (2003) Determination of conjugation efficiency of antibodies and proteins to the superparamagnetic iron oxide nanoparticles by capillary electrophoresis with laser-induced fluorescence detection. J Nanoparticle Res 5:137–146

    Article  CAS  Google Scholar 

  28. Tedesco AC, Oliveira DM, Lacava ZGM, Azevedo RB, Lima ECD, Gansau C, Buske N, Morais PC (2003) Determination of binding constant Kb of biocompatible, ferrite-based magnetic fluids to serum albumin. J Appl Phys 93:6704–6706

    Article  CAS  Google Scholar 

  29. Nishimura K, Hasegawa M, Ogura Y, Nishi T, Kataoka K, Handa H (2002) 4°C preparation of ferrite nanoparticles having protein molecules immobilized in their surfaces. J Appl Phys 91:8555–8556

    Article  CAS  Google Scholar 

  30. Liao M-H, Chen D-H (2002) Characteristics of magnetic nanoparticles-bound YADH in water/AOT/isooctane microemulsions. J Mol Catal B Enzyme 18:81–87

    Article  CAS  Google Scholar 

  31. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  CAS  PubMed  Google Scholar 

  32. Sun S, Zeng H (2002) Size-controlled synthesis of magnetic nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  PubMed  Google Scholar 

  33. Caruntu D, Remond Y, Chou NH, Jun M-J, Caruntu G, He J, Goloverda G, O‘Connor C, Kolesnichenko V (2002) Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorg Chem 41:6137–6146

    Article  CAS  PubMed  Google Scholar 

  34. Tada M, Hatanaka S, Sanbonsugi H, Matsushita N, Abe M (2003) Method for synthesizing ferrite nanoparticles 30 nm in diameter on neutral pH condition for biomedical applications. J Appl Phys 93:7566–7568

    Article  CAS  Google Scholar 

  35. Ji J, Rosenzweig N, Jones I, Rosensweig Z (2001) Molecular oxygen-sensitive fluorescent lipobeads for intracellular oxygen measurements in murine macrophages. Anal Chem 73:3521–3527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Brian Cushing and Professor Weilie Zhou for their assistance in the X-ray diffraction and TEM measurements. This work was supported by DARPA Grant no. MDA -972-03-C-0100 and by NSF Grant no. CHE-0314027

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeev Rosenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, L.M., Quach, A.D. & Rosenzweig, Z. Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem 380, 606–613 (2004). https://doi.org/10.1007/s00216-004-2770-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2770-3

Keywords

Navigation