Analytical and Bioanalytical Chemistry

, Volume 380, Issue 1, pp 15–23 | Cite as

A rapid biosensor for viable B. anthracis spores

  • Antje J. Baeumner
  • Barbara Leonard
  • John McElwee
  • Richard A. Montagna
Paper in Forefront


A simple membrane-strip-based biosensor assay has been combined with a nucleic acid sequence-based amplification (NASBA) reaction for rapid (4 h) detection of a small number (ten) of viable B. anthracis spores. The biosensor is based on identification of a unique mRNA sequence from one of the anthrax toxin genes, the protective antigen (pag), encoded on the toxin plasmid, pXO1, and thus provides high specificity toward B. anthracis. Previously, the anthrax toxins activator (atxA) mRNA had been used in our laboratory for the development of a biosensor for the detection of a single B. anthracis spore within 12 h. Changing the target sequence to the pag mRNA provided the ability to shorten the overall assay time significantly. The vaccine strain of B. anthracis (Sterne strain) was used in all experiments. A 500-μL sample containing as few as ten spores was mixed with 500 μL growth medium and incubated for 30 min for spore germination and mRNA production. Thus, only spores that are viable were detected. Subsequently, RNA was extracted from lysed cells, selectively amplified using NASBA, and rapidly identified by the biosensor. While the biosensor assay requires only 15 min assay time, the overall process takes 4 h for detection of ten viable B. anthracis spores, and is shortened significantly if more spores are present. The biosensor is based on an oligonucleotide sandwich-hybridization assay format. It uses a membrane flow-through system with an immobilized DNA probe that hybridizes with the target sequence. Signal amplification is provided when the target sequence hybridizes to a second DNA probe that has been coupled to liposomes encapsulating the dye sulforhodamine B. The amount of liposomes captured in the detection zone can be read visually or quantified with a hand-held reflectometer. The biosensor can detect as little as 1 fmol target mRNA (1 nmol L−1). Specificity analysis revealed no cross-reactivity with 11 organisms tested, among them closely related species such as B. cereus, B. megaterium, B. subtilis, B. thuringiensis, Lactococcus lactis, Lactobacillus plantarum, and Chlostridium butyricum. Also, no false positive signals were obtained from nonviable spores. We suggest that this inexpensive biosensor is a viable option for rapid, on-site analysis providing highly specific data on the presence of viable B. anthracis spores.


Biosensor B. anthracis RNA Detection Spore Viable Biosecurity Protective antigen 



The authors would like to acknowledge Innovative Biotechnologies International, Inc., Grand Island, NY, USA for providing financial support for this project.


  1. 1.
    Arakawa ET, Lavrik NV, Datskos PG (2003) Appl Opt 42(10):1757–1762PubMedGoogle Scholar
  2. 2.
    Baeumner AJ, Schlesinger N, Slutzki N, Romano J, Lee E, Montagna R (2002) Anal Chem 74(6):1442–1448CrossRefPubMedGoogle Scholar
  3. 3.
    Baeumner AJ, Cohen R, Miksic V, Min J (2003) Biosens Bioelectron 8(4):405–419CrossRefGoogle Scholar
  4. 4.
    Belgrader P, Hansford D, Kovacs GT, Venkateswaran K, Mariella R Jr, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F, Northrup MA (1999) Anal Chem 71(19):4232–4236CrossRefPubMedGoogle Scholar
  5. 5.
    Bell CA, Uhl JR, Hadfield TL, David JC, Meyer RF, Smith TF, Cockerill FR III (2002) J Clin Microbiol 40(8):2897–2902CrossRefPubMedGoogle Scholar
  6. 6.
    Beyer W, Glockner P, Otto J, Bohm R (1995) Microbiol Res 150(2):179–186PubMedGoogle Scholar
  7. 7.
    Boom R, Sol C, Salimans M, Jansen C, Wertheim van Dillen P (1990) J Clin Microbiol 28:495–503PubMedGoogle Scholar
  8. 8.
    Bruno JG, Kiel JL (1999) Biosens Bioelectron 14(5):457–464CrossRefPubMedGoogle Scholar
  9. 9.
    Carl M, Hawkins R, Coulson N, Lowe J, Robertson DL, Nelson WM, Titball RW, Woody JN (1992) J Infect Dis 165(6):1145–1148PubMedGoogle Scholar
  10. 10.
    Cheun HI, Makino SI, Watarai M, Shirahata T, Uchida I, Takeshi K (2001) J Appl Microbiol 91(3):421–426CrossRefPubMedGoogle Scholar
  11. 11.
    Coker PR, Smith KL, Fellows PF, Rybachuck G, Kousoulas KG, Hugh-Jones ME (2003) J Clin Microbiol 41(3):1212–1218CrossRefPubMedGoogle Scholar
  12. 12.
    Dang JL, Heroux K, Kearney J, Arasteh A, Gostomski M, Emanuel PA (2001) Appl Environ Microbiol 67(8):3665–3670CrossRefPubMedGoogle Scholar
  13. 13.
    Dragon DC, Rennie RP (2001) Lett Appl Microbiol 33(2):100–105CrossRefPubMedGoogle Scholar
  14. 14.
    Elhanany E, Barak R, Fisher M, Kobiler D, Altboum Z (2001) Rapid Commun Mass Spectrom 15(22):2110–2116CrossRefPubMedGoogle Scholar
  15. 15.
    Hanna P (1999) J Appl Microbiol 87:285–287CrossRefPubMedGoogle Scholar
  16. 16.
    Hartley HA, Baeumner AJ (2003) Anal Bioanal Chem 376(3):319–327PubMedGoogle Scholar
  17. 17.
    Henderson I, Duggleby C, Turnbull P (1994) Int J Syst Bacteriol 44:99–105PubMedGoogle Scholar
  18. 18.
    Hutson RA, Duggleby CJ, Lowe JR, Manchee RJ, Turnbull PC (1993) J Appl Bacteriol 75(5):463–472PubMedGoogle Scholar
  19. 19.
    Iacono-Connors LC, Novak J, Rossi C, Mangiafico J, Ksiazek T (1994) Clin Diagn Lab Immunol 1(1):78–82PubMedGoogle Scholar
  20. 20.
    Inglesby T, Henderson D, Bartlett J, Ascher M, Eitzen E, Friedlander A, Hauer J, McDade J, Osterholm M, O’Toole T, Parker G, Perl T, Russell P, Tonat K (1999) JAMA 281(18):1735–1745CrossRefPubMedGoogle Scholar
  21. 21.
    Jones MB, Blaser MJ (2003) Infect Immun 71(7):3914–3919CrossRefPubMedGoogle Scholar
  22. 22.
    Ko KS, Kim JM, Kim JW, Jung BY, Kim W, Kim IJ, Kook YH (2003) J Clin Microbiol 41(7):2908–2914CrossRefPubMedGoogle Scholar
  23. 23.
    Lai EM, Phadke ND, Kachman MT, Giorno R, Vazquez S, Vazquez JA, Maddock JR, Driks A (2003) J Bacteriol 185(4):1443–1454CrossRefPubMedGoogle Scholar
  24. 24.
    Levi K, Higham JL, Coates D, Hamlyn PF (2003) Lett Appl Microbiol 36(6):418–422CrossRefPubMedGoogle Scholar
  25. 25.
    Levine SM, Perez-Perez G, Olivares A, Yee H, Hanna BA, Blaser MJ (2002) J Clin Microbiol 40(11):4360–4362CrossRefPubMedGoogle Scholar
  26. 26.
    Liang X, Yu D (1999) J Applied Microbiol 87:200–203CrossRefGoogle Scholar
  27. 27.
    Long GW, O’Brien T (1999) J Appl Microbiol 87(2):214CrossRefPubMedGoogle Scholar
  28. 28.
    Luna VA, King D, Davis C, Rycerz T, Ewert M, Cannons A, Amuso P, Cattani J (2003) J Clin Microbiol 41(3):1252–1255CrossRefPubMedGoogle Scholar
  29. 29.
    Makino SI, Iinuma-Okada Y, Maruyama T, Ezaki T, Sasakawa C, Yoshikawa M (1993) J Clin Microbiol 31(3):547–551PubMedGoogle Scholar
  30. 30.
    Makino SI, Cheun HI, Watarai M, Uchida I, Takeshi K (2001) Lett Appl Microbiol 33(3):237–240CrossRefPubMedGoogle Scholar
  31. 31.
    Makino S, Cheun HI (2003) J Microbiol Methods 53(2):141–147CrossRefPubMedGoogle Scholar
  32. 32.
    McDonald R, Cao T, Borschel R (2001) Mil Med 166(3):237–239PubMedGoogle Scholar
  33. 33.
    Patra G, Sylvestre P, Ramisse V, Therasse J, Guesdon J (1996) FEMS Immunol Med Microbiol 15(4):223–231CrossRefPubMedGoogle Scholar
  34. 34.
    Patra G, Vaissaire J, Weber-Levy M, Le Doujet C, Mock M (1998) J Clin Microbiol 36(11):3412–3414PubMedGoogle Scholar
  35. 35.
    Qi Y, Patra G, Liang X, Williams LE, Rose S, Redkar RJ, DelVecchio VG (2001) Appl Environ Microbiol 67(8):3720–3727CrossRefPubMedGoogle Scholar
  36. 36.
    Quinn CP, Semenova VA, Elie CM, Romero-Steiner S, Greene C, Li H, Stamey K, Steward-Clark E, Schmidt DS, Mothershed E, Pruckler J, Schwartz S, Benson RF, Helsel LO, Holder PF, Johnson SE, Kellum M, Messmer T, Thacker WL, Besser L, Plikaytis BD, Taylor TH Jr, Freeman AE, Wallace KJ, Dull P, Sejvar J, Bruce E, Moreno R, Schuchat A, Lingappa JR, Martin SK, Walls J, Bronsdon M, Carlone GM, Bajani-Ari M, Ashford DA, Stephens DS, Perkins BA (2002) Emerg Infect Dis 8(10):1103–1110PubMedGoogle Scholar
  37. 37.
    Radnedge L, Agron PG, Hill KK, Jackson PJ, Ticknor LO, Keim P, Andersen GL (2003) Appl Environ Microbiol 69(5):2755–2764CrossRefPubMedGoogle Scholar
  38. 38.
    Ramisse V, Patra G, Garrigue H, Guesdon JL, Mock M (1996) FEMS Microbiol Lett 145(1):9–16CrossRefPubMedGoogle Scholar
  39. 39.
    Ramisse V, Patra G, Vaissaire J, Mock M (1999) J Appl Microbiol 87(2):224–228CrossRefPubMedGoogle Scholar
  40. 40.
    Stopa PJ (2000) Cytometry 41(4):237–244PubMedGoogle Scholar
  41. 41.
    Stratis-Cullum DN, Griffin GD, Mobley J, Vass AA, Vo-Dinh T (2003) Anal Chem 75(2):275–280CrossRefPubMedGoogle Scholar
  42. 42.
    Turnbough CL Jr (2003) J Microbiol Methods 53(2):263–271CrossRefPubMedGoogle Scholar
  43. 43.
    Turnbull P (1991) Vaccine 9:533–539CrossRefPubMedGoogle Scholar
  44. 44.
    Turnbull P (1999) J Appl Microbiol 87:237–240CrossRefPubMedGoogle Scholar
  45. 45.
    Uhl JR, Bell CA, Sloan LM, Espy MJ, Smith TF, Rosenblatt JE, Cockerill FR (2002) Mayo Clin Proc 77(7):673–680PubMedGoogle Scholar
  46. 46.
    Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL (2002) Mol Cell Probes 16(2):119–127CrossRefPubMedGoogle Scholar
  47. 47.
    Zahavy E, Fisher M, Bromberg A, Olshevsky U (2003) Appl Environ Microbiol 69(4):2330–2339CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Antje J. Baeumner
    • 1
  • Barbara Leonard
    • 1
  • John McElwee
    • 1
  • Richard A. Montagna
    • 2
  1. 1.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA
  2. 2.Innovative Biotechnologies International, Inc.Grand IslandUSA

Personalised recommendations