Analytical and Bioanalytical Chemistry

, Volume 379, Issue 7–8, pp 992–1003 | Cite as

Identification of the regulatory proteins in human pancreatic cancers treated with Trichostatin A by 2D-PAGE maps and multivariate statistical analysis

  • Emilio Marengo
  • Elisa Robotti
  • Daniela Cecconi
  • Mahmoud Hamdan
  • Aldo Scarpa
  • Pier Giorgio Righetti
Paper in Forefront


In this paper, principal component analysis (PCA) is applied to a spot quantity dataset comprising 435 spots detected in 18 samples belonging to two different cell lines (Paca44 and T3M4) of control (untreated) and drug-treated pancreatic ductal carcinoma cells. The aim of the study was the identification of the differences occurring between the proteomic patterns of the two investigated cell lines and the evaluation of the effect of the drug Trichostatin A on the protein content of the cells. PCA turned out to be a successful tool for the identification of the classes of samples present in the dataset. Moreover, the loadings analysis allowed the identification of the differentially expressed spots, which characterise each group of samples. The treatment of both the cell lines with Trichostatin A therefore showed an appreciable effect on the proteomic pattern of the treated samples. Identification of some of the most relevant spots was also performed by mass spectrometry.


PCA Chemometrics Human pancreatic tumour Trichostatin A Protein identification 



Supported by grants from AIRC (Associazione Italiana Ricerca sul Cancro, Milano, Italy), FIRB 2001 (No. RBNF01KJHT), MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca, Rome, Italy; COFIN 2003), Fondazione Cassa di Risparmio di Verona and the European Community, Grant No. QLG2-CT-2001-01903 and No. QLG-CT-2002-01196.


  1. 1.
    Righetti PG, Stoyanov A, Zhukov M (2001) The proteome revisited: theory and practice of all relevant electrophoretic steps. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Wilkins MR, Williams KL, Appel RD, Hochstrasser DF (1997) Proteome research: new frontiers in functional genomics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Fountoulakis M, Schlaeger EJ (2003) Electrophoresis 24(1–2):260–275Google Scholar
  4. 4.
    Kim J, Kim SH, Lee SU et al (2002) Electrophoresis 23:4142–4156CrossRefPubMedGoogle Scholar
  5. 5.
    Gromov PS, Ostergaard M, Gromova I et al (2002) Prog Biophys Mol Biol 80:3–22CrossRefPubMedGoogle Scholar
  6. 6.
    Dwek MV, Rawlings SL (2002) Mol Biotechnol 22:139–152CrossRefPubMedGoogle Scholar
  7. 7.
    Kostanjevecki V, Lannoy K, Daniels A et al (2002) Neurobiol Aging 23 (suppl 1):1383Google Scholar
  8. 8.
    Castegna A, Aksenov M, Thongboonkerd V et al (2002) J Neurochem 82:1524–1532CrossRefPubMedGoogle Scholar
  9. 9.
    Sickmann A, Marcus K, Schafer H et al (2001) Electrophoresis 22:1669–1676CrossRefPubMedGoogle Scholar
  10. 10.
    Sinha P, Kohl S, Fischer J et al (2000) Electrophoresis 21:3048–3057CrossRefPubMedGoogle Scholar
  11. 11.
    Tsuji T, Shiozaki A, Kohno R et al (2002) Neurochem Res 27:1245–1253CrossRefPubMedGoogle Scholar
  12. 12.
    Ryan TE, Patterson SD (2002) Trends Biotechnol 20 (suppl S):S45–S51Google Scholar
  13. 13.
    Cacabelos R (2002) Ann Med 34:357–379CrossRefPubMedGoogle Scholar
  14. 14.
    Poirier F, Pontet M, Labas V et al (2001) Electrophoresis 22:1867–1877CrossRefPubMedGoogle Scholar
  15. 15.
    Steiner S, Witzmann FA (2000) Electrophoresis 21:2099–2104CrossRefPubMedGoogle Scholar
  16. 16.
    Westergren-Thorsson G, Malmstrom J, Marko-Varga G (2001) J Pharm Biomed Anal 24:815–824CrossRefPubMedGoogle Scholar
  17. 17.
    Bhatia K, Lord R, Stanton P (2002) Eur J Cancer 28:S156CrossRefGoogle Scholar
  18. 18.
    Hoffmann F, Kriegel K, Wenk C (1999) Discrete Appl Math 93:75–88CrossRefGoogle Scholar
  19. 19.
    Lee KH (2001) Trends Biotechnol 19:217–222CrossRefPubMedGoogle Scholar
  20. 20.
    Massart DL, Vanderginste BGM, Deming SN, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Brereton RG (1990) Chemometrics: application of mathemathics and statistics to laboratory systems. Ellis Norwood, New YorkGoogle Scholar
  22. 22.
    Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New YorkGoogle Scholar
  23. 23.
    Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, LondonGoogle Scholar
  24. 24.
    James M (1985) Classification algorithms. Collins, LondonGoogle Scholar
  25. 25.
    Cox TF, Cox MAA (1994) Multidimensional scaling. Chapman and Hall, LondonGoogle Scholar
  26. 26.
    Marengo E, Robotti E, Gianotti V, Righetti PG (2003) Ann Chim (Rome) 93:105–116Google Scholar
  27. 27.
    Marengo E, Robotti E, Righetti PG, Antonucci F (2003) J Chromatogr A 1004:13–28CrossRefPubMedGoogle Scholar
  28. 28.
    Marengo E, Robotti E, Gianotti V, Righetti PG, Domenici E, Cecconi D (2003) Electrophoresis 24:225–236CrossRefPubMedGoogle Scholar
  29. 29.
    Marengo E, Leardi R, Robotti E, Righetti PG, Antonucci F, Cecconi D (2003) J Proteome Res 2:351–360CrossRefPubMedGoogle Scholar
  30. 30.
    Anderson NL, Hofmann JP, Gemmell A, Taylor J (1984) Clin Chem 30:2031–2036PubMedGoogle Scholar
  31. 31.
    Tarroux P, Vincens P, Rabilloud T (1987) Electrophoresis 8:187–199Google Scholar
  32. 32.
    Leonard RB, Mayer J, Sasser M, Woods ML, Mooney BR, Brinton BG, Newcombgayman PL, Carroll KC (1995) J Clin Microbiol 33:2723–2727PubMedGoogle Scholar
  33. 33.
    Johansson ML, Quednau M, Ahrne S, Molin G (1995) Int J Syst Bacteriol 45:670–675Google Scholar
  34. 34.
    Couto MMB, Vogels JTWE, Hofstra H, Husiintveld JHJ, Vandervossen JMBM (1995) J Appl Bacteriol 79:525–535PubMedGoogle Scholar
  35. 35.
    Boon N, De Windt W, Verstraete W, Top EM (2002) FEMS Microbiol Ecol 39:101–112CrossRefGoogle Scholar
  36. 36.
    Alika JE, Akenova ME, Fatokun CA (1995) Genet Res Crop Evol 42:393–399Google Scholar
  37. 37.
    Anderson NL, EsquerBlasco R, Richardson F, Foxworthy P, Eacho P (1996) Toxicol Appl Pharm 137:75–89CrossRefGoogle Scholar
  38. 38.
    Vohradsky J (1997) Electrophoresis 18:2749–2754PubMedGoogle Scholar
  39. 39.
    Kovarova H, Radzioch D, Hajduch M, Sirova M, Blaha V, Macela A, Stulik J, Hernychova L (1998) Electrophoresis 19:1325–1331PubMedGoogle Scholar
  40. 40.
    Lacroix-Desmazes S, Bayry J, Misra N, Horn MP, Villard S, Pashov A, Stieltjes N, d’Oiron R, Saint-Remy J, Hoebeke J, Kazatchkine MD, Kaveri SV (2002) New Engl J Med 34:662–667CrossRefGoogle Scholar
  41. 41.
    Dewettinck K, Dierckx S, Eichwalder P, Huyghebaert A (1997) Lait 77:77–89Google Scholar
  42. 42.
    Kovarova H, Hajduch M, Korinkova G, Halada P, Krupickova S, Gouldsworthy A, Zhelev N, Strnad M (2000) Electrophoresis 21:3757–3764CrossRefPubMedGoogle Scholar
  43. 43.
    Massart DL, Kaufman L (1983) Hierarchical clustering methods. In: Elving PJ, Winefordner JD (eds) The interpretation of analytical chemical data by the use of cluster analysis. Wiley, New YorkGoogle Scholar
  44. 44.
    Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R, Telerman A (2002) Proc Natl Acad Sci USA 99:14976–14981CrossRefPubMedGoogle Scholar
  45. 45.
    Alli E, Vash-Babula J, Yang JM, Hait WN (2002) Cancer Res 62:6864–6869PubMedGoogle Scholar
  46. 46.
    Cassimeris L (2002) Curr Opin Cell Biol 14:18–24CrossRefPubMedGoogle Scholar
  47. 47.
    Mistry SJ, Atweh GF (2002) Mt Sinai J Med 69:299–304PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Emilio Marengo
    • 1
  • Elisa Robotti
    • 1
  • Daniela Cecconi
    • 2
  • Mahmoud Hamdan
    • 3
  • Aldo Scarpa
    • 4
  • Pier Giorgio Righetti
    • 2
  1. 1.Department of Environmental and Life SciencesUniversity of Eastern PiedmontAlessandriaItaly
  2. 2.Department of Industrial BiotechnologiesUniversity of VeronaVeronaItaly
  3. 3.Computational, Analytical and Structural SciencesGlaxoSmithKlineVeronaItaly
  4. 4.Department of Pathology, Section of Anatomical PathologyUniversity of VeronaVeronaItaly

Personalised recommendations