Advertisement

Analytical and Bioanalytical Chemistry

, Volume 379, Issue 4, pp 547–553 | Cite as

Microstructure and composition of annealed Al/Ti-metallization layers

  • M. Hofmann
  • T. Gemming
  • K. Wetzig
Special Issue Paper

Abstract

Al/Ti multilayers with columnar grains were deposited by electron-beam evaporation on piezoelectric LiNbO3 substrates. After annealing in air and under vacuum conditions dissolution of the Ti interlayer was observed for all samples. The original Ti interlayer dissolved completely and globular Al3Ti grains were formed within an Al matrix. All samples had an oxidized adhesive Ti bottom layer and a 10 nm thin Al layer below this adhesive Ti bottom layer, which remains intact after the applied heat treatment. This resistance against dissolution by interdiffusion could be caused by the oxidation. These changes in the microstructure and in the chemical composition were investigated by conventional and analytical TEM.

Keywords

Al/Ti multilayers Phase formation at annealing TEM EFTEM Surface-acoustic-wave devices 

Notes

Acknowledgement

The authors wish to thank H. Schmidt for collaboration regarding the SAW technique, and B. Arnold and D. Lohse for their help with FIB specimen preparation. We are also indebted to SAW Components Dresden for the preparation of the metallization layers. The work has been supported by the Deutsche Forschungsgemeinschaft (GE 1037/6-1).

References

  1. 1.
    Howard JK (1977) US Patent 4 017 890Google Scholar
  2. 2.
    Nishihara T (1996) German Patent 196 51 582 A1Google Scholar
  3. 3.
    Yuhara A, Watanabe H, Yamada J (1987) Jpn J Appl Phys Suppl 26–1:135–137Google Scholar
  4. 4.
    Hosaka N, Yuhara A, Watanabe H, Yamada J, Kajiyama M (1988) Jpn J Appl Phys 27:175–177Google Scholar
  5. 5.
    Yuhara A (1987) European Patent 0 246 626 A2Google Scholar
  6. 6.
    Greer J (1991) US Patent 5 039 957Google Scholar
  7. 7.
    Yamada J, Hosaka N, Yuhara A, Iwama A (1988) Proc 1988 IEEE Ultrasonic Symp Chicago. IEEE, New York pp 285–290Google Scholar
  8. 8.
    Yuhara A, Hosaka N, Watanabe H, Yamada J, Kajiyama R, Fukaya R, Kobayashi T (1990) Proc 1990 IEEE Ultrasonic Symp Honolulu. IEEE, New York pp 493–496Google Scholar
  9. 9.
    Federspiel X, Voiron F, Ignat M, Marieb T, Fujimoto H (1998) Mater Res Soc Symp Proc 514:547–552Google Scholar
  10. 10.
    Menzel S, Schmidt H, Wetzig K, Weihnacht M (2000) Proc 12th European Congr on Electron Microscopy Vol II. Physical Sciences, Brno pp 541–542Google Scholar
  11. 11.
    Menzel S, Schmidt H, Weihnacht M, Wetzig K (2002) Proc. 6th Int. Workshop on Stress-Induced Phenomena in Metallization, Ithaca 612. Melville, AIP, New York pp 133–141Google Scholar
  12. 12.
    Hofmann M, Gemming T, Menzel S, Wetzig K (2003) Z Metallkd 94:317–322Google Scholar
  13. 13.
    Hofmann M, Gemming T, Menzel S, Wetzig K (2003) Microsc Microanal 9:250–251Google Scholar
  14. 14.
    Lorimer GW, Cliff G, Aaronson HI, Kinsman KR (1975) Scripta Met 9:271–279CrossRefGoogle Scholar
  15. 15.
    Reimer L (1995) Energy-filtering transmission electron microscopy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Michaelsen C, Wöhlert S, Bormann R, Barmak K (1996) Mater Res Soc Symp Proc 398:245–250Google Scholar
  17. 17.
    Wittmer M, LeGoues F, Huang HCW (1985) J Electrochem Soc 132:1450–1455Google Scholar
  18. 18.
    Kimura H, Sasamori K, Inoue A (1998) Mater Trans JIM 39:773–777Google Scholar
  19. 19.
    Lucadamo G, Barmak K, Carpenter DT, Lavoie C, Cabral C, Michaelsen C, Rickman JM (1999) Mater Res Soc Symp Proc 562:159–164Google Scholar
  20. 20.
    Moffatt WG (1987) (eds) The handbook of binary phase diagrams, Vol. 1. Genium, New YorkGoogle Scholar
  21. 21.
    Ahn CC, Krivanek OL (1983) (eds) EELS atlas. Gatan, WarrendaleGoogle Scholar
  22. 22.
    Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. Plenum, New YorkGoogle Scholar
  23. 23.
    Tardy J, Tu KN (1985) Phys Rev B 32:2070–2081CrossRefGoogle Scholar
  24. 24.
    Jawarani D (1994) J Electrochem Soc 141:302–306Google Scholar
  25. 25.
    Ren J, Li Y, Feng T (2002) Mater Lett 56:647–652CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Leibniz-Institut für Festkörper- und Werkstoffforschung DresdenDresdenGermany

Personalised recommendations