Advertisement

Analytical and Bioanalytical Chemistry

, Volume 379, Issue 3, pp 512–518 | Cite as

Rapid multi-element analysis of groundwater by high-resolution inductively coupled plasma mass spectrometry

  • Z. ChengEmail author
  • Y. Zheng
  • R. Mortlock
  • A. van Geen
Original Paper

Abstract

A rapid and sensitive method was developed to determine, with a single dilution, the concentration of 33 major and trace elements (Na, Mg, Si, K, Ca, Li, Al, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, In, Sn, Sb, Cs, Ba, Re, Hg, Pb, Bi, U) in groundwater. The method relies on high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS) and works across nine orders of magnitude of concentrations. For most elements, detection limits for this method are considerably lower than methods based on quadrupole ICP-MS. Precision was within or close to ±3% (1σ) for all elements analyzed, with the exception of Se (±10%) and Al (±6%). The usefulness of the method is demonstrated with a set of 629 groundwater samples collected from tube wells in Bangladesh (Northeast Araiharzar). The results show that a majority of tube well samples in this area exceed the WHO guideline for As of 10 μg L−1, and that those As-safe wells frequently do not meet the guideline for Mn of 500 µg L−1 and U of 2 µg L−1.

Keywords

HR ICP-MS Groundwater Multi-element analyses Bangladesh 

Notes

Acknowledgments

The development of this method was supported by the US NIEHS/Superfund Basic Research Program (Grant P42ES10349). NSF grant OCE 9977429 contributed to the purchase of the VG Axiom. We thank Xiaoguang Meng (Stevens Institute of Technology, Hoboken, NJ) for providing the two wastewater samples. This is Lamont Doherty Earth Observatory contribution number 6600.

References

  1. 1.
    US EPA (1992) Methods for the determination of metals in environmental samples. US Environmental Protection Agency, Cincinnati, OhioGoogle Scholar
  2. 2.
    Matschat R, Czerwensky M, Hamester M, Pattberg S (1997) Fresenius J Anal Chem 359:418–423CrossRefGoogle Scholar
  3. 3.
    Schnetger B (1997) Fresenius J Anal Chem 359:468–472CrossRefGoogle Scholar
  4. 4.
    Cullen JT, Field P, Sherrel M (2001) J Anal Atom Spectrom 16:1307–1312CrossRefGoogle Scholar
  5. 5.
    Field PM, Cullen JT, Sherrell RM (1999) J Anal Atom Spectrom 14(9):1425–1432CrossRefGoogle Scholar
  6. 6.
    Axelsson MD, Rodushkin I, Ingri J, Ohlander, N (2002) Analyst 127:76–82CrossRefPubMedGoogle Scholar
  7. 7.
    Field PM, Sherrell RM (2003) J Anal Atom Spectrom 18(3):254–259CrossRefGoogle Scholar
  8. 8.
    WHO (1996) Guidelines for drinking-water quality, 2nd edn, vol 2, health criteria and other supporting information. World Health Organization, Geneva, p 940Google Scholar
  9. 9.
    WHO (1998) Guidelines for drinking-water quality, 2nd edn, addendum to vol 2. World Health Organization, Geneva, p 281Google Scholar
  10. 10.
    Van Geen A, Zheng Y, Versteeg R (2003) Water Resour Res 39(6):1140–1153Google Scholar
  11. 11.
    Allard B (1995) Groundwater. In: Salbu B, Steinnes E (eds) Trace elements in natural waters. CRC, Boca Raton, p 151Google Scholar
  12. 12.
    BGS/DPHE (2001) Arsenic contamination of groundwater in Bangladesh, Final Report. British Geological Survey, Keyworth, UKGoogle Scholar
  13. 13.
    Frisbie SH, Ortega R, Maynard DM, Sarkar B (2002) Environ Health Persp 110:1147–1153Google Scholar
  14. 14.
    Klaue B, Blum JD (1999) Anal Chem 71(7):1408–1414CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Z. Cheng
    • 1
    Email author
  • Y. Zheng
    • 1
    • 2
  • R. Mortlock
    • 1
  • A. van Geen
    • 1
  1. 1.Lamont Doherty Earth Observatory of Columbia UniversityUSA
  2. 2.School of Earth and Environmental SciencesQueens CollegeNYUSA

Personalised recommendations