Advertisement

Analytical and Bioanalytical Chemistry

, Volume 379, Issue 3, pp 439–444 | Cite as

Simultaneous micellar liquid chromatographic analysis of seven water-soluble vitamins: optimization using super-modified simplex

  • Ali R. Ghorbani
  • Fariborz Momenbeik
  • Jafar H. Khorasani
  • Mohammad K. Amini
Original Paper

Abstract

A super-modified simplex (SMS) method has been used to optimize the mobile phase used for separation of seven water-soluble vitamins in multivitamin tablets by gradient micellar liquid chromatography (MLC) with ultraviolet (UV) detection at 254, 295, and 361 nm. Effect of column temperature and addition of organic modifier to the mobile phase on separation efficiency were investigated: the appropriate conditions used were a temperature of 35°C and 1-butanol modifier. The sodium dodecyl sulfate (SDS) concentration, pH, and 1-butanol% in the mobile phase were chosen for simultaneous optimization using the SMS method. The optimum mobile phase was found to be 16 mmol L−1 (mM) SDS, 0.02 M phosphate buffer, pH 3.6, and a gradient of 3.5–10% (v/v) butanol. The total analysis time for vitamins was 75 min. The analytical parameters including linearity (r>0.9970), limit of detection (0.12–50 µg mL−1), precision of method (relative standard deviation (RSD) <8.90%), and accuracy obtained by the recovery assay (88–103%) support the usefulness of the proposed method for the determination of the water-soluble vitamins.

Keywords

Micellar liquid chromatography Water-soluble vitamins Sodium dodecyl sulfate Super-modified simplex 

Notes

Acknowledgements

The authors gratefully acknowledge support of this work by the University of Isfahan Graduate Office and Research Council and Amin Pharmaceutical Company.

References

  1. 1.
    Moreno P, Salvado V (2000) J Chromatogr A 870:207–215CrossRefPubMedGoogle Scholar
  2. 2.
    Cho CM, Ko JH, Cheng WJ (2000) Talanta 51:799–806CrossRefGoogle Scholar
  3. 3.
    Albala-Hurado S, Veciana-Nogues MT, Izquierdo-Pulido M, Marine-font A (1997) J Chromatogr A 778:247–253CrossRefPubMedGoogle Scholar
  4. 4.
    Iwase H (1992) J Chromatogr 625: 377–381CrossRefPubMedGoogle Scholar
  5. 5.
    Blanco D, Sanchez LA, Gutierrez MD (1994) J Liq Chrom 17:1525–1539Google Scholar
  6. 6.
    Monferrer-Pons L, Capella-peiro ME, Gil-Agusti M, Esteve-Romero J (2003) J Chromatogr A 984:223–231CrossRefPubMedGoogle Scholar
  7. 7.
    Hernandez MJM, Alvarez-Coque MCG (1992) Analyst 117:831–837CrossRefGoogle Scholar
  8. 8.
    Morgan SL, Deming SN (1975) J Chromatogr 112:267–285Google Scholar
  9. 9.
    Deming SN, Morgan SL (1973) Anal Chem 45:278A–283AGoogle Scholar
  10. 10.
    Nelder JA, Mead R (1965) Comp J 7:308–313Google Scholar
  11. 11.
    Routh MW, Swartz PA, Denton MB (1977) Anal Chem 49:1422–1428Google Scholar
  12. 12.
    Berridge JC, Morrissey EG (1984) J Chromatogr 316:69–79Google Scholar
  13. 13.
    Madamba-Tan LS, Strasters JK, Khaledi MG (1994) J Chromatogr A 683:335–345CrossRefPubMedGoogle Scholar
  14. 14.
    Madamba-Tan LS, Strasters JK, Khaledi MG (1994) J Chromatogr A 683:321–334CrossRefPubMedGoogle Scholar
  15. 15.
    Miller JC, Miller JN (eds) (1992) Statistics for analytical chemistry. Ellis Horwood, ChichesterGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ali R. Ghorbani
    • 1
  • Fariborz Momenbeik
    • 1
  • Jafar H. Khorasani
    • 1
  • Mohammad K. Amini
    • 1
  1. 1.Department of ChemistryUniversity of IsfahanIsfahanIran

Personalised recommendations