Advertisement

Analytical and Bioanalytical Chemistry

, Volume 379, Issue 2, pp 255–260 | Cite as

Application of heated electrodes operating in a non-isothermal mode for interference elimination with amperometric biosensors

  • Carolin Lau
  • Sabine Reiter
  • Wolfgang Schuhmann
  • Peter Gründler
Special Issue Paper

Abstract

Heated electrodes were applied for the non-isothermal operation of amperometric glucose biosensors based on glucose oxidase immobilised on the electrode surface by entrapment within a polymer layer. The localised deposition of the polymer film under simultaneous entrapment of the enzyme was achieved by an electrochemically induced pH-modulation in the diffusion zone in front of the electrode, thus altering the solubility of the polymer chains. This non-manual sensor preparation protocol could be successfully used for the modification of a novel indirectly heated electrode. The non-isothermal operating mode allows working at the optimum temperature of the enzyme sensors without any thermal distortion of the bulk solution. Increased surface temperature of the sensor thus accelerates transport as well as kinetic processes, resulting in an enhanced amperometric signal.

In the presence of interfering compounds such as ascorbic acid, the proposed technique allows use of the diverging thermal impact on the sensing process, for different electrochemically active compounds, for a deconvolution of the amperometric signal at different electrode temperatures. A calculation method for determination of glucose in the presence of one interfering compound is presented as a basis for a calculative interference elimination.

Keywords

Heated electrodes Glucose biosensor Interference Ascorbic acid 

Notes

Acknowledgement

The authors thank TETEKERA company for providing the LTCC electrodes and Mrs. S. Janiak for technical assistance. Financial support of Deutsche Forschungsgemeinschaft (Project Gr1238/6–4) as well as of “Allgemeines Promotionskolleg der Ruhr-Universität Bochum” is gratefully acknowledged.

References

  1. 1.
    Thévenot DR, Toth K, Durst RA, Wilson GS (1999) Pure Appl Chem 71(12):2333–2348Google Scholar
  2. 2.
    Wang J (1999) Anal Chem 71:328R-322RCrossRefPubMedGoogle Scholar
  3. 3.
    Wagner G, Schmid RD (1990) Food Biotechnol 4:215–240Google Scholar
  4. 4.
    Strehlitz B, Gründig B, Schuhmacher W, Kroneck PMH, Vorlop KD, Kotte H (1996) Anal Chem 68:807–816CrossRefGoogle Scholar
  5. 5.
    Wang J, Gründler P, Flechsig GU, Jasinski M, Lu J, Wang J, Zhao J, Tian B (1999) Anal Chim Acta 396:33–37CrossRefGoogle Scholar
  6. 6.
    Wang J, Gründler P, Flechsig GU, Jasinski M, Rivas G, Sahlin E, Lopez Paz JL (2000) Anal Chem 72:3752–3756CrossRefPubMedGoogle Scholar
  7. 7.
    Jasinski M, Gründler P, Flechsig GU, Wang J (2001) Electroanalysis 13:34–36CrossRefGoogle Scholar
  8. 8.
    Flechsig GU, Korbut O, Gründler P (2001) Electroanalysis 13:786–788CrossRefGoogle Scholar
  9. 9.
    Wang J, Gründler P (2003) J Electroanal Chem 540:153–157CrossRefGoogle Scholar
  10. 10.
    Korbut O, Bučková M, Labuda J, Gründler P (2003) Sensors 3:11Google Scholar
  11. 11.
    Korbut O, Bučková M, Tarapčik P, Labuda J, Gründler P (2001) J Electroanal Chem 506:143–148CrossRefGoogle Scholar
  12. 12.
    Schuhmann W (2002) Rev Mol Biotechnol 82:425–441CrossRefGoogle Scholar
  13. 13.
    Röhm I, Künnecke W, Bilitewski U (1995) Anal Chem 67:2304–2307Google Scholar
  14. 14.
    Gernet S, Koudelka M, de Rooji NF (1998) Sens Actuators 17:537–540Google Scholar
  15. 15.
    Newman JD, Turner APF (1992) Anal Chim Acta 262:13–17Google Scholar
  16. 16.
    Mosbach M, Zimmermann H, Laurell T, Nilsson J, Csöregi E, Schuhmann W (2001) Biosens Bioelectron 16:827–837CrossRefPubMedGoogle Scholar
  17. 17.
    Strike DJ, de Rooij NF, Koudelka-Hep M (1995) Biosens Bioelectron 10:61–66CrossRefGoogle Scholar
  18. 18.
    Bartlett PN, Cooper JM (1993) J Electroanal Chem 362:1–12CrossRefGoogle Scholar
  19. 19.
    Schuhmann W (1995) Mikrochim Acta 121:1–29Google Scholar
  20. 20.
    Cosnier S (1999) Biosens Bioelectron 14:443–456CrossRefPubMedGoogle Scholar
  21. 21.
    Cosnier S, Gondran C (1999) Analusis 27:558–564Google Scholar
  22. 22.
    Wallace GG, Smyth M, Zhao H (1999) Trends Anal Chem 18:245–251CrossRefGoogle Scholar
  23. 23.
    Gerard M, Chaubey A, Malhotra BD (2002) Biosens Bioelectron 17:345–359Google Scholar
  24. 24.
    Kurzawa C, Hengstenberg A, Schuhmann W (2002) Anal Chem 74:355–361CrossRefPubMedGoogle Scholar
  25. 25.
    Vilkanauskyte A, Erichsen T, Marcinkeviciene L, Laurinavicius V, Schuhmann W (2002) Biosens Bioelectron 17:1025–1031CrossRefPubMedGoogle Scholar
  26. 26.
    Neugebauer S, Isik S, Schulte A, Schuhmann W (2003) Anal Lett 36:2005–2020CrossRefGoogle Scholar
  27. 27.
    Mullen WH, Keedy FH, Churchhouse SJ, Vadgama PM (1986) Anal Chim Acta 183:59–66CrossRefGoogle Scholar
  28. 28.
    Sasso S, Pierce RJ, Walla R, Yacynych AM (1990) Anal Chem 62:1111–1117Google Scholar
  29. 29.
    Jung SK, Wilson GS (1996) Anal Chem 68:591–596PubMedGoogle Scholar
  30. 30.
    Ohara TJ, Rajagopalan R, Heller A ( 1994) Anal Chem 66:2451–2457Google Scholar
  31. 31.
    Maidan R, Heller A (1992) Anal Chem 64:2889–2896PubMedGoogle Scholar
  32. 32.
    Dimcheva N, Horozova E, Jordanova Z (2002) Z Naturforsch 57c:705–711Google Scholar
  33. 33.
    Schmidt HL, Schuhmann W (1996) Biosens Bioelectron 11:127–135CrossRefGoogle Scholar
  34. 34.
    Reiter S, Eckhard K, Blöchl A, Schuhmann W (2001) Analyst 126:1912–1918CrossRefPubMedGoogle Scholar
  35. 35.
    Voss T, Gründler P, Kirbs A, Flechsig GU (1999) Electrochem Comm 1:383–388CrossRefGoogle Scholar
  36. 36.
    Gründler P, Kirbs A (1999) Electroanalysis 11:223–228CrossRefGoogle Scholar
  37. 37.
    Beckmann A, Coles BA, Compton RG, Gründler P, Marken F, Neudeck A (2000) J Phys Chem B 104:764–769CrossRefGoogle Scholar
  38. 38.
    Harima Y, Aoyagui (1977) J Electroanal Chem 81:47CrossRefGoogle Scholar
  39. 39.
    Lau C, Thelemann T, Surkus A, Gründler P (2004) Electrochem Commu (in preparation)Google Scholar
  40. 40.
    Zerihun T, Gründler P (1996) J Electroanal Chem 404:243–248CrossRefGoogle Scholar
  41. 41.
    Gründler P (2000) Fresenius J Anal Chem 367:324CrossRefPubMedGoogle Scholar
  42. 42.
    Nakamura S, Hayashi S, Koga K (1976) Biochem Biophys Acta 445:294–308CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Carolin Lau
    • 1
  • Sabine Reiter
    • 2
  • Wolfgang Schuhmann
    • 2
  • Peter Gründler
    • 1
  1. 1.Fachbereich Chemie, Abteilung für Analytische, Technische und UmweltchemieUniversität RostockRostockGermany
  2. 2.Anal. Chem.—Elektroanalytik & SensorikRuhr-Universität BochumBochumGermany

Personalised recommendations