Analytical and Bioanalytical Chemistry

, Volume 379, Issue 5–6, pp 759–763 | Cite as

Rapid spectrofluorimetric determination of lisinopril in pharmaceutical tablets using sequential injection analysis

  • Constantinos K. Zacharis
  • Paraskevas D. Tzanavaras
  • Demetrius G. ThemelisEmail author
  • Georgios A. Theodoridis
  • Anastasios Economou
  • Pantelis G. Rigas
Special Issue Paper


The present work reports for the first time a simple and rapid method for the spectrofluorimetric determination of lisinopril (LSP) in pharmaceutical formulations using sequential injection analysis (SIA). The method is based on reaction of LSP with o-phthalaldehyde (OPA) in the presence of 2-mercaptoethanol (borate buffer medium, pH=10.6). The emission of the derivative is monitored at 455 nm upon excitation at 346 nm. The various chemical and physical conditions that affected the reaction were studied. The calibration curve was linear in the range 0.3–10.0 mg L−1 LSP, at a sampling rate of 60 injections h−1. Consumption of OPA reagent was significantly reduced compared with conventional flow injection (FI) systems, because only 50 μL of OPA was consumed per run. The method was found to be adequately precise (sr=2% at 5 mg L−1 LSP, n=10) and the 3σ detection limit was 0.1 mg L−1. The method was successfully applied to the analysis of two pharmaceutical formulations containing LSP. The results obtained were in good agreement with those obtained by use of high-performance liquid chromatography (HPLC), because the mean relative error, er, was <1.8%.


Lisinopril Sequential injection Spectrofluorimetry o-Phthalaldehyde Pharmaceutical formulations 


  1. 1.
    United States Pharmacopeia (1995) XXIII US Pharmacopeial Convention, Rockville, MD, p 895Google Scholar
  2. 2.
    The official Lisinopril web site, http://www.lisinopril.comGoogle Scholar
  3. 3.
    Paraskevas G, Atta-Politou J, Koupparis M (2002) J Pharm Biomed Anal 29:865–872CrossRefPubMedGoogle Scholar
  4. 4.
    El-Yazbi FA, Abdine HH, Shaalan RA (1999) J Pharm Biomed Anal 19:819–827CrossRefPubMedGoogle Scholar
  5. 5.
    El-Gindy A, Ashour A, Abdel-Fattah L, Shabana MM (2001) J Pharm Biomed Anal 25:913–922CrossRefPubMedGoogle Scholar
  6. 6.
    Abdel Razak O, Belal SF, Bedair MM, Barakat NS, Haggag RS (2003) J Pharm Biomed Anal 31:701–711CrossRefPubMedGoogle Scholar
  7. 7.
    Ozer D, Senel H (1999) J Pharm Biomed Anal 21:691–695CrossRefPubMedGoogle Scholar
  8. 8.
    Wong YC, Charles BG (1995) J Chromatogr B 673:306–310CrossRefGoogle Scholar
  9. 9.
    Tsakalof A, Bairachtari K, Georgarakis M (2003) J Chromatogr B 783:425–432CrossRefGoogle Scholar
  10. 10.
    Hillaert S, van de Bossche W (2000) J Chromatogr A 895:33–42CrossRefPubMedGoogle Scholar
  11. 11.
    Hillaert S, de Grauwe K, van de Bossche W (2001) J Chromatogr A 924:439–449CrossRefPubMedGoogle Scholar
  12. 12.
    Abdel Razak O, Belal SF, Bedair MM, Haggag RS (2003) Talanta 59:1061–1069CrossRefGoogle Scholar
  13. 13.
    Yuan AS, Gilbert JD (1996) J Pharm Biomed Anal 14:773–778CrossRefPubMedGoogle Scholar
  14. 14.
    Ruzicka J, Marshall GD (1990) Anal Chim Acta 237:329–343Google Scholar
  15. 15.
    Aktas ES, Ersoy L, Sagirli O (2003) Il Farmaco 58:165–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Constantinos K. Zacharis
    • 1
  • Paraskevas D. Tzanavaras
    • 1
  • Demetrius G. Themelis
    • 1
    Email author
  • Georgios A. Theodoridis
    • 1
  • Anastasios Economou
    • 1
  • Pantelis G. Rigas
    • 2
  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryAristotle University ThessalonikiThessalonikiGreece
  2. 2.Department of Fisheries and Aquaculture TechnologyTechnological Educational InstitutionNea MoudaniaGreece

Personalised recommendations