Advertisement

Analytical and Bioanalytical Chemistry

, Volume 378, Issue 8, pp 1887–1897 | Cite as

Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery

  • Lei YeEmail author
  • Karsten HauptEmail author
Review

Abstract

Biological receptors play an important role in affinity-based drug assays, biosensors, and at different stages during the modern drug discovery process. The molecular imprinting technology that has recently emerged has shown great potential for producing biomimetic receptors that challenge their natural counterparts. In this paper, we will overview recent progress in the use of molecularly imprinted polymers for drug assays, assembly of biomimetic sensors, and screening of combinatorial libraries. In addition, examples of using artificially-created binding sites to control synthetic reactions will be discussed. The “screening-of-building blocks” approach is expected to accelerate generation of valuable lead compounds, without the costly synthesis of large chemical libraries.

Keywords

Molecularly imprinted polymer Immunoassay Biosensor Library screening Drug discovery 

References

  1. 1.
    Shea KJ (1994) Trends Polym Sci 2:166–173Google Scholar
  2. 2.
    Wulff G (1995) Angew Chem Int Ed Engl 34:1812–1832Google Scholar
  3. 3.
    Mosbach K, Ramström O (1996) Bio-Technol 14:163–170Google Scholar
  4. 4.
    Svenson J, Nicholls IA (2001) Anal Chim Acta 5:19–24CrossRefGoogle Scholar
  5. 5.
    Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Nature 361:645–647CrossRefPubMedGoogle Scholar
  6. 6.
    Andersson LI, Müller R, Vlatakis G, Mosbach K (1995) P Natl Acad Sci USA 92:4788–4792Google Scholar
  7. 7.
    Ramström O, Ye L, Mosbach K (1996) Chem Biol 3:471–477CrossRefPubMedGoogle Scholar
  8. 8.
    Bengtsson H, Roos U, Andersson LI (1997) Anal Comm 34:233–235CrossRefGoogle Scholar
  9. 9.
    Muldoon MT, Stanker LH (1995) J Agric Food Chem 43:1424–1427Google Scholar
  10. 10.
    Haupt K, Dzgoev A, Mosbach K (1998) Anal Chem 70:628–631CrossRefGoogle Scholar
  11. 11.
    Ye L, Mosbach K (2001) J Am Chem Soc 123:2901–2902CrossRefPubMedGoogle Scholar
  12. 12.
    Ye L, Surugiu I, Haupt K (2002) Anal Chem 74:959–964PubMedGoogle Scholar
  13. 13.
    Haupt K, Mayes AG, Mosbach K (1998) Anal Chem 70:3936–3939CrossRefGoogle Scholar
  14. 14.
    Kröger S, Turner APF, Mosbach K, Haupt K (1999) Anal Chem 71:3698–3702CrossRefPubMedGoogle Scholar
  15. 15.
    Turkewitsch P, Wandelt B, Darling GD, Powell WS (1998) Anal Chem 70:2025–2030CrossRefGoogle Scholar
  16. 16.
    Andersson LI (1996) Anal Chem 68:111–117CrossRefGoogle Scholar
  17. 17.
    Surugiu I, Ye L, Yilmaz E, Dzgoev A, Danielsson B, Mosbach K, Haupt K (2000) Analyst 125:13–16CrossRefGoogle Scholar
  18. 18.
    Piletsky SA, Piletska EV, Chen B, Karim K, Weston D, Barrett G, Lowe P, Turner APF (2000) Anal Chem 72:4381–4385CrossRefPubMedGoogle Scholar
  19. 19.
    Surugiu I, Svitel J, Ye L, Haupt K, Danielsson B (2001) Anal Chem 73:4388–4392Google Scholar
  20. 20.
    Lin J-M, Yamada M (2001) Analyst 126:810–815CrossRefPubMedGoogle Scholar
  21. 21.
    Andersson L, Mandenius CF, Mosbach K (1988) Tetrahedron Lett 29:5437–5440CrossRefGoogle Scholar
  22. 22.
    Andersson LI, Miyabayashi A, O’Shannessy DJ, Mosbach K (1990) J Chromatogr 516:323–331Google Scholar
  23. 23.
    Piletsky SA, Parhometz YP, Lavryk NV, Panasyuk TL, El’skaya AV (1994) Sensor Actuat B–Chem 18–19:629–631Google Scholar
  24. 24.
    Hedborg E, Winquist F, Lundström I, Andersson LI, Mosbach K (1993) Sensor Actuat A–Phys 36–38:796–799Google Scholar
  25. 25.
    Panasyuk TL, Mirsky VM, Piletsky SA, Wolfbeis OS (1999) Anal Chem 71:4609–4613CrossRefGoogle Scholar
  26. 26.
    Haupt K, Noworyta K, Kutner W (1999) Anal Commun 36:391–393CrossRefGoogle Scholar
  27. 27.
    Malitesta C, Losito I, Zambonin PG (1999) Anal Chem 71:1366–1370CrossRefGoogle Scholar
  28. 28.
    Lee SW, Ichinose I, Kunitake T (1998) Langmuir 14:2857–2863CrossRefGoogle Scholar
  29. 29.
    Dickert FL, Hayden O (2002) Anal Chem 74:1302–1306CrossRefPubMedGoogle Scholar
  30. 30.
    Kriz D, Kempe M, Mosbach K (1996) Sensor Actuat B–Chem 33:178–181Google Scholar
  31. 31.
    Piletsky SA, Piletskaya EV, Elgersma AV, Yano K, Karube I, Parhometz YP, El’skaya AV (1995) Biosens Bioelectron 10:959–964CrossRefGoogle Scholar
  32. 32.
    Piletsky S, Piletskaya EV, Panasyuk TL, El’skaya AV, Levi R, Karube I, Wulff G (1998) Macromolecules 31:2137–2140CrossRefGoogle Scholar
  33. 33.
    Sergeyeva TA, Piletsky SA, Brovko AA, Slinchenko EA, Sergeeva LM, Panasyuk TL, Elskaya AV (1999) Analyst 124:331–334CrossRefGoogle Scholar
  34. 34.
    Kriz D, Ramström O, Svensson A, Mosbach K (1995) Anal Chem 67:2142–2144Google Scholar
  35. 35.
    Dickert FL, Tortschanoff M, Bulst WE, Fischerauer G (1999) Anal Chem 71:4559–4563CrossRefGoogle Scholar
  36. 36.
    Kriz D, Mosbach K (1995) Anal Chim Acta 300:71–75CrossRefGoogle Scholar
  37. 37.
    Matsui J, Higashi M, Takeuchi T (2000) J Am Chem Soc 122:5218–5219CrossRefGoogle Scholar
  38. 38.
    Jakusch M, Janotta M, Mizaikoff B, Mosbach K, Haupt K (1999) Anal Chem 71:4786–4791CrossRefGoogle Scholar
  39. 39.
    Ramström O, Ye L, Mosbach K (1998) Anal Commun 35:9–11CrossRefGoogle Scholar
  40. 40.
    Bowman MAE, Allender CJ, Brain KR, Heard CM (1998) A high-throughput screening technique employing molecularly imprinted polymers as biomimetic selectors. Royal Society of Chemistry, LondonGoogle Scholar
  41. 41.
    Vallano PT, Remcho VT (2000) J Chromatogr A 888:23–34CrossRefPubMedGoogle Scholar
  42. 42.
    Ye L, Yu Y, Mosbach K (2001) Analyst 126:760–765CrossRefPubMedGoogle Scholar
  43. 43.
    Khasawneh MA, Vallano PT, Remcho V T (2001) J Chromatogr A 922:87–97CrossRefPubMedGoogle Scholar
  44. 44.
    Matsui J, Nicholls IA, Karube I, Mosbach K (1996) J Org Chem:61Google Scholar
  45. 45.
    Sellergren B, Karmalkar RN, Shea KJ (2000) J Org Chem 65:4009–4027CrossRefPubMedGoogle Scholar
  46. 46.
    Wulff G, Vietmeier J (1989) Makromol Chem 190:1727–1735CrossRefGoogle Scholar
  47. 47.
    Byström S, Börje A, Åkermark B (1993) J Am Chem Soc 115:2081–2083Google Scholar
  48. 48.
    Alexander C, Smith CR, Whitcombe MJ, Vulfson EN (1999) J Am Chem Soc 121:6640–6651CrossRefGoogle Scholar
  49. 49.
    Blundell TL, Jhoti H, Abell C (2002) Nat Rev Drug Discov 1:45–54CrossRefPubMedGoogle Scholar
  50. 50.
    Rosamond J, Allsop A (2000) Science 287:1973–1976CrossRefPubMedGoogle Scholar
  51. 51.
    Huc I, Lehn J-M (1997) P Natl Acad Sci USA 94:2106–2110CrossRefGoogle Scholar
  52. 52.
    Nguyen R, Huc I (2001) Angew Chem Int Ed 40:1774–1776CrossRefGoogle Scholar
  53. 53.
    Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Angew Chem Int Ed 41:1053–1057CrossRefGoogle Scholar
  54. 54.
    Hochgürtel M, Kroth H, Piecha D, Hofmann MW, Nicolau C, Krause S, Schaaf O, Sonnenmoser G, Eliseev AV (2002) P Natl Acad Sci USA 99:3382–3387CrossRefGoogle Scholar
  55. 55.
    Melo RL, Pozzo RCB, Pimenta DC, Perissutti E, Caliendo G, Santagada V, Juliano L, Juliano MA (2001) Biochemistry 40:5226–5232PubMedGoogle Scholar
  56. 56.
    Emim JADS, Souccar C, Castro MSDA, Godinho RO, Cezari MHS, Juliano L, Lapa AJ (2000) Brit J Pharmacol 130:1099–1107Google Scholar
  57. 57.
    Wolf WC, Evans DM, Chao L, Chao J (2001) Am J Pathol 159:1797–1805PubMedGoogle Scholar
  58. 58.
    Garrett GS, Correa PE, McPhail SJ, Tornheim K, Burton JA, Eickhoff DJ, Engerholm GG, McIver JM (1998) J Pept Res 52:60–71PubMedGoogle Scholar
  59. 59.
    Burton NP, Lowe CR (1992) J Mol Recognit 5:55–68PubMedGoogle Scholar
  60. 60.
    Mosbach K, Yu Y, Andersch J, Ye L (2001) J Am Chem Soc 123:12420–12421CrossRefPubMedGoogle Scholar
  61. 61.
    Yu Y, Ye L, Haupt K, Mosbach K (2002) Angew Chem Int Ed 41:4459–4463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Pure and Applied Biochemistry, Chemical CenterLund UniversityLundSweden
  2. 2.Compiègne University of TechnologyCompiègneFrance

Personalised recommendations