Skip to main content
Log in

Coupling NMR to NOM

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work itemizes and critically assesses several 1D and multi-dimensional nuclear magnetic resonance (NMR) techniques, in both the liquid (solvent suppression, APT, DEPT, INEPT, COSY, TOCSY, HSQC, HMQC, HMBC, NOESY, ROESY and others) and solid states (DP, SACP, RAMP-CP, CP-TOSS, MQ-DEPT, 2D 1H–13C HETCOR and others), which are relevant to the characterization of natural organic matter (NOM). The pros and cons of many of the discussed techniques are compared in an effort to provide guidance to the most beneficial utilization of these NMR instrumental techniques for researchers interested in gaining insight into various aspects of NOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1D:

One dimensional

2D:

Two dimensional

APT:

Attached proton test

BIRD:

Bilinear rotation decoupling

CP:

Cross polarization

COSY:

Correlation spectroscopy

CSA:

Chemical shift anisotropy

DEPT:

Distortionless enhancement by polarization transfer

DMSO:

Dimethyl sulfoxide

DOSY:

Diffusion ordered spectroscopy

DP:

Direct polarization

DQ:

Double quantum

FID:

Free induced decay

FT:

Fourier transform

FT-ICR-MS:

Fourier transform-ion cyclotron resonance-mass spectroscopy

HETCOR:

Heteronuclear correlation

HH:

Hartmann–Hahn

HMBC:

Heteronuclear multiple bond correlation

HMQC:

Heteronuclear multiple quantum coherence

HSQC:

Heteronuclear single quantum coherence

INEPT:

Insensitive nuclei enhanced by polarization transfer

LR-COSY:

Long-range COSY

MAS:

Magic-angle spinning

MQ:

Multiple quantum

MS:

Mass spectroscopy

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser enhancement

NOESY:

Nuclear Overhauser enhanced spectroscopy

NOM:

Natural organic matter

PASS:

Phase adjustment of spinning sidebands

RAMP:

Ramped amplitude

RESTORE:

Restoration of spectra via T CH and T one rho (T 1ρH) editing

r.f.:

Radio frequency

ROESY:

Rotating frame Overhauser enhancement spectroscopy

SACP:

Single amplitude cross polarization

SOM:

Soil organic matter

SS:

Spinning sideband

TMS:

Tetramethylsilane

TOCSY:

Total correlation spectroscopy

TOSS:

Total suppression of sidebands

TPPM:

Two-pulse phase modulation

VCT:

Variable contact time

VSL:

Variable spin lock

WATERGATE:

Water suppression by gradient tailored excitation

References

  1. Stevenson FJ (1994) Humus chemistry; genesis, composition, reactions, 2nd edn. Wiley, New York

  2. Hatcher PG, Dria KJ, Swunghwan K, Frazier SW (2001) Soil Sci 166:770–794

    Article  CAS  Google Scholar 

  3. Kujawinski EB (2002) Environ Forensics 3:207–216

    CAS  Google Scholar 

  4. Stenson AC, Marshall AG, Cooper WT (2003) Anal Chem 75:1275–1284

    Article  CAS  PubMed  Google Scholar 

  5. Stenson AC, Langing WM, Marshall AG, Cooper WT (2003) Anal Chem 74:4397–4409

    Article  Google Scholar 

  6. Fievre A, Solouki T, Marshall AG, Cooper WT (1997) 11:554–560

  7. Kujawinski EB, Hatcher PG, Freitas MA (2002) Anal Chem 74:413–419

    CAS  PubMed  Google Scholar 

  8. Brown TL, Rice JA (2000) Anal Chem 72:384–390

    Article  CAS  PubMed  Google Scholar 

  9. Alomary A, Solouki T, Patterson HH, Cronan CS (2000) Environ Sci Technol 34:2830–2838

    Article  CAS  Google Scholar 

  10. Solouki T, Freitas MA, Alomary A (1999) Anal Chem 71:4719–4726

    Article  CAS  Google Scholar 

  11. Simpson AJ (2001) Soil Sci 166:795–809

    Article  CAS  Google Scholar 

  12. Zakrezewska J, Zujovic Z, Vucelic D (2000) New Adv Anal Chem:P1/291–P1/358

    Google Scholar 

  13. Mathers NJ, Mao XA, Xu ZH, Saffigna PG, Berners-Price SJ, Perera MCS (2000) Aust J Soil Res 38:769–787

    Article  CAS  Google Scholar 

  14. Knicker H, Kogel-Knabner I (1998) ACS Symp Ser 707:339–356

    CAS  Google Scholar 

  15. Dec J, Bollag J-M (1997) Soil Sci 162:858–874

    Article  CAS  Google Scholar 

  16. Kogel-Knabner I (1997) Geoderma 80:243–270

    Article  CAS  Google Scholar 

  17. Leenheer JA (1997) Characterization of natural organic matter by nuclear magnetic resonance spectroscopy. In: Nanny MA, Minear RA, Leenheer JA (eds) Nuclear magnetic resonance spectroscopy in environmental chemistry. Oxford University Press, New York, pp 213–220

  18. Preston CM (1996) Soil Sci 161:144–166

    CAS  Google Scholar 

  19. Wershaw RL, Mikita MA (1987) (eds) NMR of humic substances and coal: techniques, problems, and solutions. Lewis, Chelsea

  20. Wilson MA (1987) NMR techniques and applications in geochemistry and soil chemistry, Pergamon, New York

  21. Axelson DE (1985) Solid-state nuclear magnetic resonance of fossil fuels. Multiscience, Minister of Supply and Services Canada (M39–16/1985E)

  22. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, New York

  23. Stejskal EO, Memory JD (1994) High resolution NMR in the solid state; fundamentals of CP/MAS. Oxford University Press, New York

  24. Deur MJ (2002) (ed) Solid-state NMR spectroscopy; principles and applications. Blackwell, Malden

  25. Kolodziejski W, Klinowski J (2002) Chem Rev 102:613–628

    Article  CAS  PubMed  Google Scholar 

  26. Smernik RJ, Oades JM (2000) Geoderma 96:159–171

    Article  CAS  Google Scholar 

  27. Smernik RJ, Baldock JA, Oades MJ (2002) Solid State Nucl Magn Reson 22:71–82

    Article  CAS  PubMed  Google Scholar 

  28. Smernik RJ, Baldock JA, Oades MJ, Whittaker AK (2002) Solid State Nucl Magn Reson 22:50–70

    Article  CAS  PubMed  Google Scholar 

  29. Smernik RJ, Oades JM (2003) Euro J Soil Sci 54:103–116

    Article  CAS  Google Scholar 

  30. Stejskal EO, Schaefer J, Waugh JS (1977) J Magn Reson 28:105–112

    CAS  Google Scholar 

  31. Peersen OB, Wu X, Smith SO (1993) J Magn Reson Ser A 106:127–131

    Article  Google Scholar 

  32. Cook RL, Langford CH (1999) A biogeopolymeric view of humic substances with application to paramagnetic metal effects on13C NMR. Special publication, Royal Society of Chemistry, 247 (Understanding Humic Substances) pp 31–48

  33. Cook RL, Langford CH (1999) Polymer News 24:6–15

    CAS  Google Scholar 

  34. Smernik RJ, Oades JM (2000) Commun Soil Sci Plant Anal 31:3011–3026

    CAS  Google Scholar 

  35. Wilson MA, Vassallo AM, Perdue EM, Reuters JH (1987) Anal Chem 59:551–567

    CAS  Google Scholar 

  36. Keeler C, Maciel GE (2003) Anal Chem 75:2421–2432

    Article  CAS  PubMed  Google Scholar 

  37. Smernik RJ, Oades JM (2001) Solid State Nucl Magn Reson 20:74–84

    Article  CAS  PubMed  Google Scholar 

  38. Preston CM (2001) Can J Soil Sci 81:225–270

    Google Scholar 

  39. Preston CM (2000) Can J Soil Sci 80:227–229

    Google Scholar 

  40. McGill WB, Roy JL (2000) Can J Soil Sci 80:231–234

    Google Scholar 

  41. Hu W-G, Schmidt-Rohr K (2000) Polymer 41:2979–2987

    Article  CAS  Google Scholar 

  42. Mao J-D, Hu W-G, Schmidt-Rohr K, Davies G, Davies EA, Xing B (2000) Soil Sci Soc Am J 64:873–884

    CAS  Google Scholar 

  43. Snape CE, Axelson DE, Botto RE, Delpuech JJ, Tekely P, Gerstein BC, Pruski M, Maciel GE, Wilson MA (1989) Fuel 68:547–560

    Article  CAS  Google Scholar 

  44. Mao J-D, Xing B, Schmidt-Rohr K (2001) Environ Sci Technol 35:1928–1934

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt-Rohr K, Mao J-D (2002) J Magn Res 157:210–217

    Article  CAS  Google Scholar 

  46. Schmidt-Rohr K, Mao J-D (2002) J Am Chem Soc 124:13938–13948

    Article  CAS  PubMed  Google Scholar 

  47. Mao J-D, Hundal LS, Schmidt-Rohr K, Thompson ML (2003) Environ Sci Technol 37:1751–1757

    Article  CAS  PubMed  Google Scholar 

  48. Cook RL, Langford CH, Yamdagni R, Preston CM (1996) Anal Chem 68:3979–3986

    Article  CAS  Google Scholar 

  49. Cook RL, Langford CH (1998) Environ Sci Technol 32:719–725

    Article  CAS  Google Scholar 

  50. Dria KJ, Sachleben JR, Hatcher PG (2002) J Environ Qual 31:393–401

    CAS  PubMed  Google Scholar 

  51. Mao J-D, Hu WG, Ding G, Schmidt-Rohr K, Davies G, Ghabbour EA, Xing B (2002) Int J Environ Anal Chem 82:183–196

    CAS  Google Scholar 

  52. Dixon WT (1982) J Chem Phys 77:1800–1809

    Article  CAS  Google Scholar 

  53. Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, Mckay RA (1982) J Magn Reson 49:341–345

    CAS  Google Scholar 

  54. Axelson DE (1985) Fuel 66:195–199

    Article  Google Scholar 

  55. Peuravuori J, Ingman P, Pihlaja K (2003) Talanta 59:177–189

    Article  CAS  Google Scholar 

  56. Peerseen OB, Wu X, Kastanovich I, Smith SO (1993) J Magn Reson Ser A 104:334–339

    Article  Google Scholar 

  57. Metz G, Ziliox M, Smith SO (1996) Solid State Nucl Magn Reson 7:155–160

    Article  CAS  PubMed  Google Scholar 

  58. Metz G, Wu X, Smith SO (1994) J Magn Res Ser A 110:219–227

    Article  CAS  Google Scholar 

  59. Mehring M (1983) Principles of high resolution NMR in solids. Springer, Berlin Heidelberg New York

  60. Nielsen NC, Bildsoe H, Jakobsen HJ (1992) J Magn Res 98:665–673

    CAS  Google Scholar 

  61. Horne D, Kendrick RD, Yannoni CS (1983) J Magn Res 52:299–304

    CAS  Google Scholar 

  62. Marks D, Vega S (1996) J Magn Res 118:157–172

    Article  CAS  Google Scholar 

  63. Randall EW, Mahieu N, Ivanova GI (1997) Geoderma 80:307–325

    Article  CAS  Google Scholar 

  64. Wind RA, Maciel GE, Botto RE (1993) Carbon-13 NMR spectroscopy of carbonaceous solids. In: Botto RE, Sanada Y (eds) Magnetic resonance of carbonaceous solids. Am Chem Soc, Washington, DC, pp 3–26

  65. Wu X, Burns ST, Zilm KW (1994) J Magn Res Ser A 111:29–36

    Article  CAS  Google Scholar 

  66. Keeler C, Maciel GE (2000) J Mol Struct 550/551:297–305

    Google Scholar 

  67. Mao J, Ding G, Xing B (2002) Commun Soil Sci Plant Anal 33:1679–1688

    Article  CAS  Google Scholar 

  68. Caravatti P, Braunschweiler L, Ernst RR (1983) Phys Lett 100:305–310

    Article  CAS  Google Scholar 

  69. vanRossum BJ, Forster H, deGroot HJM (1997) J Magn Reson 124:516–519

    Article  CAS  Google Scholar 

  70. Lesage A, Sakellariou D, Steuernagel S, Emsley L (1998) J Am Chem Soc 120:13194–13201

    Article  CAS  Google Scholar 

  71. Lee M, Goldgerg WI (1965) Phys Rev 140:A1261–A1271

    Article  Google Scholar 

  72. Purcell EM, Torrey HC, Pound RV (1946) Phys Rev 69:37–38

    Article  Google Scholar 

  73. Bloch F, Hansen WW, Packard M (1946) Phys Rev 69:127–130

    Article  Google Scholar 

  74. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy; principles and practice. Academic Press, New York

  75. Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York

    Google Scholar 

  76. Reynolds WF, Enriquez RG (2002) J Nat Prod 65:221–224

    Article  CAS  PubMed  Google Scholar 

  77. Braun S, Kalinowski H-O, Berger S (1998) 150 and more basic NMR experiments; a practical course. Wiley–VCH, New York

  78. Piotto M, Saudek V, Sklenar V (1992) J Biomol NMR 2:661–665

    PubMed  Google Scholar 

  79. Sklenar V, Piotto M, Leppik R, Saudek V (1993) J Magn Reson A 102:241–245

    Article  CAS  Google Scholar 

  80. Lee GSH, Wilson MA, Young BR (1998) Org Geochem 28:549–559

    Article  CAS  Google Scholar 

  81. Cook RL, McIntyre DD, Langford CH, Vogel HJ (2003) Environ Sci Technol. 37:3935–3944

    Google Scholar 

  82. Simpson A (2001) Soil Sci 166:795–809

    Article  CAS  Google Scholar 

  83. Wang K, Dickinson CL, Ghabbour EA, Davies G, Xing B (2003) Soil Sci 168:128–136

    Article  CAS  Google Scholar 

  84. Shin H, Moon H (1996) Soil Sci 161:250–256

    Article  CAS  Google Scholar 

  85. Shin HS, Rhee SW, Lee BH, Moon CH (1996) Org Geochem 24:523–529

    Article  CAS  Google Scholar 

  86. Ivanova GI, Randall EW (2003) Cent Eur J Chem 1:10–26

    CAS  Google Scholar 

  87. Buddrus J, Burba P, Lambert J, Herzog H (1989) Anal Chem 61:628–631

    CAS  Google Scholar 

  88. Haiber S, Burba P, Herzog H, Lambert J (1999) Fresenius J Anal Chem 364:215–218

    Article  CAS  Google Scholar 

  89. Haiber S, Herzog H, Burba P, Gosciniak B, Lambert J (2001) Fresenius J Anal Chem 369:457–460

    Article  CAS  PubMed  Google Scholar 

  90. Haiber S, Herzog H, Burba P, Gosciniak B, Lambert J (2001) Environ Sci Technol 35:4289–4294

    Article  CAS  PubMed  Google Scholar 

  91. Chien Y-Y, Bleam WF (1998) Environ Sci Technol 32:3653–3658

    Article  CAS  Google Scholar 

  92. Wang L, Mao X, Yang Y (1998) Bopuxue Zazhi 15:411–420

    CAS  Google Scholar 

  93. Schmitt-Kopplin P, Hertkorn N, Schulten H-R, Kettrup A (1998) Environ Sci Technol 32:2531–2541

    Article  CAS  Google Scholar 

  94. Hertkorn N, Claus H, Schmitt-Kopplin P, Perdue EM, Filip Z (2002) Environ Sci Technol 36:4334–4345

    Article  CAS  PubMed  Google Scholar 

  95. Hertkorn N, Permin A, Perminova I, Kovalevskii D, Yudov M, Petrosyan V, Kettrup A (2002) J Environ Qual 31:375–387

    CAS  PubMed  Google Scholar 

  96. Hertkorn N, Schmitt-Kopplin P, Perminova IV, Kovalevskii D, Kettrup A (2001) Two dimensional NMR spectroscopy of humic substances. In: Swift RS, Sparks KM (eds) Proc 9th Int Conf of the Int Humic Substances Soc, Understanding and Managing Organic Matter is Soils, Sediments, and Waters, University of Adelaide, Australia 21–25 September 1998. IHSS, St Paul, MN, pp 149–158

  97. Morris KF, Cutak BJ, Dixon AM, Larive CK (1999) Anal Chem 71:5315–5321

    Article  CAS  Google Scholar 

  98. Fan TW-M, Higashi RM, Lane AN (2000) Environ Sci Technol 34:1636–1646

    Article  Google Scholar 

  99. Kingery WL, Simpson AJ, Hayes MHB, Locke MA, Hicks RP (2000) Soil Sci 165:483–494

    Article  CAS  Google Scholar 

  100. Simpson AJ, Burdon J, Graham CL, Hayes MHB, Spencer N, Kingery WL (2001) Euro J Soil Sci 52:495–509

    Article  CAS  Google Scholar 

  101. Simpson AJ, Kingery WL, Shaw DR, Spraul M, Humpfer E, Dvortsak P (2001) Environ Sci Technol 35:3321–3325

    Article  CAS  PubMed  Google Scholar 

  102. Simpson AJ, Kingery WL, Spraul M, Humpfer E, Dvortsak P, Kerssebaum R (2001) Environ Sci Technol 35:4421–4425

    Article  CAS  PubMed  Google Scholar 

  103. Simpson AJ, Kingery WL, Hayes MHB, Spraul M, Humpfer E, Dvortsak P, Kerssebaum R, Godejohann M, Hofmann M (2002) Naturwissenschaften 89:84–88

    Article  Google Scholar 

  104. Simpson AJ, Salloum MJ, Kingery WL, Hatcher PG (2002) J Environ Qual 31:388–392

    CAS  PubMed  Google Scholar 

  105. Simpson AJ (2002) Magn Reson Chem 40:S72–S82

    Article  CAS  Google Scholar 

  106. Simpson AJ, Kingery WL, Hatcher PG (2003) Environ Sci Technol 37:337–342

    Article  CAS  PubMed  Google Scholar 

  107. Kaiser E, Simpson AJ, Dria KJ, Sulzberger B, Hatcher PG (2003) Environ Sci Technol 37:2929–2935

    CAS  PubMed  Google Scholar 

  108. Hull WE (1994) In: Croasmun WR, Carlson RMK (eds) Two-dimensional NMR spectroscopy; applications for chemists and biochemists, 2nd edn. VCH, New York, p 307

  109. Bax A, Ikura M, Kay LE, Torcia DA, Tschudin R (1990) J Magn Reson 86:304–318

    CAS  Google Scholar 

  110. McLean S, Reynolds WF, Wang JP, Jacobs H, Jean-Pierre LL (1994) Magn Reson Chem 32:422–428

    CAS  Google Scholar 

  111. Neurhaus D, Williamson MP (2000) The nuclear Overhauser effect in structure and conformation analysis, 2nd edn. Wiley–VCH, New York, p 37

  112. Dixon AM, Larive CK (1999) Appl Spectrosc 53:426A–440A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, R.L. Coupling NMR to NOM. Anal Bioanal Chem 378, 1484–1503 (2004). https://doi.org/10.1007/s00216-003-2422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2422-z

Keywords

Navigation