Analytical and Bioanalytical Chemistry

, Volume 378, Issue 6, pp 1528–1535 | Cite as

Chiral separation of nanomole amounts of alprenolol with cITP/NMR

  • Dimuthu A. Jayawickrama
  • Jonathan V. SweedlerEmail author
Original Paper


On-line cITP–NMR with chiral selectors separates and concentrates analytes and identifies host–guest interactions of analytes with selectivity enhancers in the electrolyte. An NMR microcoil designed for a 200 μm i.d. capillary creates a high-mass-sensitivity 30 nL NMR cell and is used as an on-line detector for cITP. Using a mixture of 2 nmol racemic alprenolol in acetate buffer with α-cyclodextrin and sulfated β-cyclodextrin at pD 6.0, cITP–NMR successfully separates and concentrates both R- and S-alprenolol. The concentration enhancement for the R isomer is 224-fold and for the S isomer is 200-fold. The estimated concentration at peak maximum for R-alprenolol is ~28 mmol L−1 and a slightly lower concentration, 25 mmol L−1 is achieved for S-alprenolol. These concentrations convert to placing 76% of the injected S-alprenolol and 84% of the R-alprenolol into the 30 nL detection cell at peak maximum. With on-flow cITP–NMR, intermolecular interactions between the cyclodextrins and the alprenolol are observed in the NMR spectra. Aromatic and methyl moieties of R- and S-alprenolol are identified as two important sites that bind with these particular cyclodextrins.


Chiral separation Capillary isotachophoresis Microcoil NMR On-flow 



We gratefully acknowledge Professor Barry L. Karger and Dr Roger A. Kautz (Department of Chemistry, Northeastern University, USA) for supplying PVA-coated capillaries. We thank Andrew Wolters (Department of Chemistry, University of Illinois, Urbana-Champaign, USA) and Professor Andrew G. Webb (Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, USA) for technical support. We greatly appreciate the assistance of Dr Paul F. Molitor and the Varian Oxford Instruments Center for Excellence in NMR (VOICE Lab) in the School of Chemical Sciences at the University of Illinois, Urbana-Champaign, USA. We gratefully acknowledge financial support from the National Institute of Health (EB002343).


  1. 1.
    Jorgenson JW, Lukacs KD (1983) Science 222:266–272PubMedGoogle Scholar
  2. 2.
    Stuart JN, Sweedler JV (2003) Proc Natl Acad Sci USA 100:3545–3546CrossRefPubMedGoogle Scholar
  3. 3.
    Kennedy RT (1999) Anal Chim Acta 400:163–180CrossRefGoogle Scholar
  4. 4.
    Tomer KB, Deterding LJ, Parker CE (1995) Adv Chromatogr 35:53–99Google Scholar
  5. 5.
    Wu NA, Peck TL, Webb AG, Magin RL, Sweedler JV (1994) Anal Chem 66:3849–3857Google Scholar
  6. 6.
    Wu N, Peck TL, Webb AG, Magin RL, Sweedler JV (1994) J Am Chem Soc 116:7929–7930Google Scholar
  7. 7.
    Pusecker K, Schewitz J, Gfrorer P, Tseng LH, Albert K, Bayer E (1998) Anal Chem 70:3280–3285CrossRefGoogle Scholar
  8. 8.
    Lacey ME, Subramanian R, Olson DL, Webb AG, Sweedler JV (1999) Chem Rev 99:3133–3152CrossRefPubMedGoogle Scholar
  9. 9.
    Glaser T, Lienau A, Zeeb D, Krucker M, Dachtler M, Albert K (2003) Chromatographia 57:S19–S25Google Scholar
  10. 10.
    Byrne B, Rothchild R (1999) Chirality 11:529–535CrossRefPubMedGoogle Scholar
  11. 11.
    Ito S, Miki T, Yoshikawa M, Hamada M, Kawate Y, Hayashi S, Sato A, Kiyoshi T, Matsumoto F, Nagai H, Wada H, Fukui S, Noguchi T (2002) IEEE T Appl Supercon 12:1347–1350CrossRefGoogle Scholar
  12. 12.
    Song YQ, Goodson BM, Pines A (1999) Spectroscopy 14:26–33Google Scholar
  13. 13.
    Flynn PF, Mattiello DL, Hill HDW, Wand AJ (2000) J Am Chem Soc 122:4823–4824CrossRefGoogle Scholar
  14. 14.
    Nagai H, Sato A, Kiyoshi T, Matsumoto F, Wada H, Ito S, Miki T, Yoshikawa M, Kawate Y, Fukui S (2001) Cryogenics 41:623–630CrossRefGoogle Scholar
  15. 15.
    Shoorley JN (1979) Top Carbon-13 NMR Spectrosc 3:28–38Google Scholar
  16. 16.
    Peck TL, Magin RL, Lauterbur PC (1995) J. Magn Reson Ser B 108:114–124CrossRefGoogle Scholar
  17. 17.
    Hoult DI, Richards RE (1976) J Magn Reson 24:71–85Google Scholar
  18. 18.
    Olson DL, Peck TL, Webb AG, Magin RL, Sweedler JV (1995) Science 270:1967–1970Google Scholar
  19. 19.
    Lacey ME, Webb AG, Sweedler JV (2000) Anal Chem 72:4991–4998CrossRefPubMedGoogle Scholar
  20. 20.
    Olson DL, Lacey ME, Webb AG, Sweedler JV (1999) Anal Chem 71:3070–3076CrossRefPubMedGoogle Scholar
  21. 21.
    Kautz RA, Lacey ME, Wolters AM, Foret F, Webb AG, Karger BL, Sweedler J V (2001) J Am Chem Soc 123:3159–3160PubMedGoogle Scholar
  22. 22.
    Wolters AM, Jayawickrama DA, Webb AG, Sweedler JV (2002) Anal Chem 74:5550–5555CrossRefPubMedGoogle Scholar
  23. 23.
    Wolters AM, Jayawickrama DA, Larive CK, Sweedler JV (2002) Anal Chem 74:2306–2313CrossRefPubMedGoogle Scholar
  24. 24.
    Everaerts FM, Beckers JL, Verheggen PFMT (1976) Isotachophoresis; theory, instrumentation and applications, J Chromatogr Library, vol 6. Elsevier, Amsterdam, pp 7–26Google Scholar
  25. 25.
    Adam A, Schots C (1980) Biochemical and biological applications of isotachophoresis. Elsevier, Sainte Ode, BelgiumGoogle Scholar
  26. 26.
    Holloway CJ (1982) 3rd Int Symp Isotachophoresis. Walter de Gruyter. Goslar, GermanyGoogle Scholar
  27. 27.
    Amini A (2001) Electrophoresis 22:3107–3130CrossRefPubMedGoogle Scholar
  28. 28.
    Rizzi A (2001) Electrophoresis 22:3079–3106CrossRefPubMedGoogle Scholar
  29. 29.
    Kaniansky D, Simunicova E, Olvecka E, Ferancova A (1999) Electrophoresis 20:2786–2793CrossRefPubMedGoogle Scholar
  30. 30.
    Dankova M, Kaniansky D, Fanali S, Ivanyi F (1999) J Chromatogr A 838:31–43CrossRefPubMedGoogle Scholar
  31. 31.
    Mehvar R, Brocks DR (2001) J Pharm Pharm Sci 4:185–200PubMedGoogle Scholar
  32. 32.
    Hedeland M, Nygard M, Isaksson R, Pettersson C (2000) Electrophoresis 21:1587–1596CrossRefPubMedGoogle Scholar
  33. 33.
    Peterson AG, Foley JP (1997) J Chromatogr B 695:131–145CrossRefGoogle Scholar
  34. 34.
    Nilsson S, Schweitz L, Petersson M (1997) Electrophoresis 18:884–890PubMedGoogle Scholar
  35. 35.
    Peterson AG, Ahuja ES, Foley JP (1996) J Chromatogr B 683:15–28CrossRefGoogle Scholar
  36. 36.
    Siren H, Jumppanen JH, Manninen K, Riekkola ML (1994) Electrophoresis 15:779–784PubMedGoogle Scholar
  37. 37.
    Vargas MG, Vander HY, Maftouh M, Massart DL (1999) J Chromatogr A 855:681–693CrossRefPubMedGoogle Scholar
  38. 38.
    Dong YY, Sun YL, Sun ZP (1998) J High Resolut Chromatogr 21:445–449CrossRefGoogle Scholar
  39. 39.
    Goetzinger W, Karger BL, US Patent 5 840 388Google Scholar
  40. 40.
    Szejtli J (1998) Chem Rev 98:1743–1753CrossRefPubMedGoogle Scholar
  41. 41.
    Caron G, Ermondi G, Boschi D, Carrupt PA, Fruttero R, Testa, B, Gasco A (1999) Helv Chim Acta 82:1630–1639CrossRefGoogle Scholar
  42. 42.
    Tanaka Y, Terabe S (2002) J Chromatogr B 768:81–92Google Scholar
  43. 43.
    Brecker L, Weber H, Griengl H, Ribbons DW (1999) Microbiol UK 145:3389–3397Google Scholar
  44. 44.
    Martin M, Labousesse J, Canioni P, Merele M (1993) Magn Reson Med 29:692–694PubMedGoogle Scholar
  45. 45.
    Lacey ME, Webb AG, Sweedler JV (2000) Anal Chem 72:4991–4998CrossRefPubMedGoogle Scholar
  46. 46.
    Maiwald M, Fischer HH, Kim YK, Hasse H (2003) Anal Bioanal Chem 375:1111–1115PubMedGoogle Scholar
  47. 47.
    Bendel P, Bernardo M, Dunsmuir JH, Thomann H (2003) Phys Rev E 67: art. no. 046307CrossRefGoogle Scholar
  48. 48.
    Wolters AM, Jayawickrama DA, Larive CK, Sweedler JV (2002) Anal Chem 74:4191–4197CrossRefPubMedGoogle Scholar
  49. 49.
    Carofiglio T, Fornasier R, Jicsinszky L, Saielli G, Tonellato U, Vetta R (2002) Eur J Org Chem 7:1191–1196CrossRefGoogle Scholar
  50. 50.
    Caron L, Christine C, Tilloy S, Monflier E, Landy D, Fourmentin S, Surpateanu G (2002) Supramol Chem 14:11–20CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Dimuthu A. Jayawickrama
    • 1
  • Jonathan V. Sweedler
    • 1
    Email author
  1. 1.Department of Chemistry and the Beckman InstituteUniversity of IllinoisUrbanaUSA

Personalised recommendations