Analytical and Bioanalytical Chemistry

, Volume 378, Issue 7, pp 1716–1721

Ultrasonic agitation in microchannels

Original Paper


This paper describes an acoustic method for inducing rotating vortex flows in microchannels. An ultrasonic crystal is used to create an acoustic standing wave field in the channel and thus induce a Rayleigh flow transverse to the laminar flow in the channel. Mixing in microchannels is strictly diffusion-limited because of the laminar flow, a transverse flow will greatly enhance mixing of the reactants. This is especially evident in chemical microsystems in which the chemical reaction is performed on a solid phase and only one reactant is actually diffusing. The method has been evaluated on two different systems, a mixing channel with two parallel flows and a porous silicon micro enzyme reactor for protein digestion. In both systems a significant increase of the mixing ratio is detected in a narrow band of frequency for the actuating ultrasound.


Microchannels Rotating vortex flow Rayleigh flow Acoustics Ultrasonic agitation Reagent mixing 


  1. 1.
    Brody JP, Yager P (1997) Sens Actuators A 58:13–18CrossRefGoogle Scholar
  2. 2.
    Hatch A et al (2001) Nat Biotechnol 19:461–465CrossRefPubMedGoogle Scholar
  3. 3.
    Ismagilov RF et al (2000) Appl Phys Lett 76:2376–2378CrossRefGoogle Scholar
  4. 4.
    Hong CC, Choi JW, Ahn CH (2001) A novel in plane passive micromixer using coanda effect. In: μTAS 2001, Monterey, CA, USA. Kluwer, DordrechtGoogle Scholar
  5. 5.
    Bessoth FG, deMello AJ, Manz A (1999) Anal Commun 36:213–215CrossRefGoogle Scholar
  6. 6.
    Böhm S et al (2001) A rapid vortex micromixer for studying high speed chemical reactions. In: μTAS 2001, Monterey, CA, USA. Kluwer, DordrechtGoogle Scholar
  7. 7.
    Liu RH et al (2000) J Microelectromech Syst 9:190–197CrossRefGoogle Scholar
  8. 8.
    Oddy MH, Santiago JG, Mikkelsen JC (2001) Anal Chem 73:5822–5832CrossRefPubMedGoogle Scholar
  9. 9.
    Lu LH, Ryu KS, Liu C (2001) A novel microstirrer and arrays for microfluidic mixing. In: μTAS 2001, Monterey, CA, USA. Kluwer, DordrechtGoogle Scholar
  10. 10.
    Zhu X, Kim ES (1998) Sens Actuators A 66:355–360CrossRefGoogle Scholar
  11. 11.
    Yang Z et al (2001) Sens Actuators A 93:266–272CrossRefGoogle Scholar
  12. 12.
    Ekstrom S et al (2000) Anal Chem 72:286–293CrossRefPubMedGoogle Scholar
  13. 13.
    Bengtsson M, Ekstrom S, Marko-Varga G, Laurell T (2002) Talanta 341–353Google Scholar
  14. 14.
    Rayleigh L (1883) Philos Trans R Soc London 1Google Scholar
  15. 15.
    Sharpe JP et al (1989) Velocimetry Acustica 68:168–172Google Scholar
  16. 16.
    Vainshtein P, Fichman M, Gutfinger C (1995) Int J Heat Mass Transfer 38:1893–1899CrossRefGoogle Scholar
  17. 17.
    Yarin AL (2002) Fluid Dyn Res 31:79–102CrossRefGoogle Scholar
  18. 18.
    Pugin B (1987) Ultrasonics 25:49–55CrossRefGoogle Scholar
  19. 19.
    Gondrexon N et al (1998) Ultrason Sonochem 5:1–6CrossRefPubMedGoogle Scholar
  20. 20.
    Mason TJ (2003) Ultrason Sonochem 10:175–179CrossRefPubMedGoogle Scholar
  21. 21.
    Rathgeber A et al (2001) Planar microfluidics—liquid handling without walls arXiv:physics.acc-ph/0104079Google Scholar
  22. 22.
    Strobl CJ et al (2002) Planar microfluidic processors, In: IEEE Ultrasonics Symp, 2002. IEEEGoogle Scholar
  23. 23.
    Moroney RM, White RM, Howe RT (1991) Appl Phys Lett 59:774–776CrossRefGoogle Scholar
  24. 24.
    Drott J et al (1997) J Micromech Microeng 7:14–23CrossRefGoogle Scholar
  25. 25.
    Bengtsson M, Drott J, Laurell T (2000) Physica Status Solidi A 182:533–539CrossRefGoogle Scholar
  26. 26.
    Izuo S et al (2002) Sens Actuators A 97/98:720–724Google Scholar
  27. 27.
    Weetall HH (1976) Covalent coupling methods for inorganic support materials. In Mosbach K (ed) Methods in Enzymology. Academic Press, NY, pp 134–148Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Electrical MeasurementsLund Institute of TechnologyLundSweden

Personalised recommendations