Skip to main content
Log in

Nanoscale proteomics

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies (i.e., nanoscale proteomics) are described. The approach combines high-efficiency nanoscale LC (separation peak capacity of ≈103; 15-μm-i.d. packed capillaries with flow rates of 20 nL min−1, the optimal separation linear velocity) with advanced MS, including high-sensitivity and high-resolution Fourier transform ion cyclotron resonance MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology enables broad protein identification from nanogram-size proteomics samples and allows the characterization of more abundant proteins from sub-picogram-size samples. Protein identification in such studies using MS is demonstrated from <75 zeptomole of a protein. The average proteome measurement throughput is ~50 proteins h−1 using MS/MS during separations, presently requiring approximately 3 h sample−1. Greater throughput (~300 proteins h−1) and improved detection limits providing more comprehensive proteome coverage can be obtained by using the “accurate mass and time” tag approach developed in our laboratory. This approach provides a dynamic range of at least 106 for protein relative abundances and an improved basis for quantitation. These capabilities lay the foundation for studies from single or limited numbers of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Devine KM, Wolfe K (1995) Trends Genet 11:429; http://www.ebi.ac.uk/research/cgg/genomes.html; http://www.tigr.org

  2. Pandey A, Mann M (2000) Nature 405:837

    PubMed  Google Scholar 

  3. Heppner GH, Miller FR (1998) Int Rev Cytol 177:1

    CAS  PubMed  Google Scholar 

  4. Emmert-Buck MR et al (1996) Science 274:998; Bonner RF et al (1997) Science 278:1481

    CAS  PubMed  Google Scholar 

  5. Sgroi DC et al (1999) Cancer Res 59:5656; Roth MJ et al (2001) Cancer Res 61:4098

    PubMed  Google Scholar 

  6. Shen Y et al (2001) Anal Chem 73:1766; 3011

    Article  CAS  PubMed  Google Scholar 

  7. Washburn MP et al (2001) Nat Biotechnol 19:242; Wolters DA et al (2001) Anal Chem 73:5683

    Article  PubMed  Google Scholar 

  8. Fann JB et al (1989) Science 246:64

    PubMed  Google Scholar 

  9. Marshall AG et al (1998) Mass Spectrom Rev 17:1; Martin SE et al (2000) Anal Chem 72:4266; Quenzer EL et al (2001) Anal Chem 73:1721; Belov et al (2003) Anal Chem 75:4195

    Article  Google Scholar 

  10. Anderson GA et al (1998) Proceedings of the 46th ASMS conference on mass spectrometry and allied topics, p 1270; Bruce JE et al (1999) Anal Chem 71:2595; Goodlett DR et al (2000) Anal Chem 72:1112; Harkewicz R et al (2002) J Am Soc Mass Spectrom 13:144

    PubMed  Google Scholar 

  11. Bruins AP, Covey TR, Henion JD (1987) Anal Chem 59:2642

    CAS  Google Scholar 

  12. Shen Y et al (2002) Anal Chem 74:4235

    Article  CAS  PubMed  Google Scholar 

  13. Martin SE, Shabanowitz J, Hunt DF, Marto JA (2000) Anal Chem 72:4266

    Article  CAS  PubMed  Google Scholar 

  14. Quenzer TL et al (2001) Anal Chem 73:1721

    Article  CAS  PubMed  Google Scholar 

  15. Haskins WE et al (2001) Anal Chem 73:5005

    Article  CAS  PubMed  Google Scholar 

  16. Chen J et al (2003) Anal Chem 75:3145

    Article  CAS  PubMed  Google Scholar 

  17. Shen Y et al (2003) Anal Chem 75:3596

    Article  CAS  Google Scholar 

  18. Shen Y et al (2003) Anal Chem (in press)

  19. Anderson GA, Bruce JE (eds) (1995) ICR-2LS, Tolić N (ed) (2001) LaV2DG. Pacific Northwest National Laboratory, Richland, WA

  20. ftp://ftp.tigr.org/pub/data/d_radiodurans/GDR.pep. Cited 31 July 2003

  21. Lipton MS et al (2002) Proc Natl Acad Sci USA 99:11049

    Article  CAS  PubMed  Google Scholar 

  22. Shen Y et al (2003) Anal Chem (submitted)

  23. Masselon CD et al (2000) Anal Chem 72:1918

    Article  PubMed  Google Scholar 

  24. Li L et al (2001) Anal Chem 73:3312

    Article  CAS  PubMed  Google Scholar 

  25. Oda Y et al (1999) Proc Natl Acad Sci USA 96:6591

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the US Department of Energy’s Office of Biological and Environmental Research and the National Cancer Institute (Grant CA 86340) for their support of portions of this research. Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the US Department of Energy through Contract DE-ACO6–76RLO 1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Tolić, N., Masselon, C. et al. Nanoscale proteomics. Anal Bioanal Chem 378, 1037–1045 (2004). https://doi.org/10.1007/s00216-003-2329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2329-8

Keywords

Navigation