Analytical and Bioanalytical Chemistry

, Volume 378, Issue 1, pp 214–220 | Cite as

Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye

  • A. Bianco Prevot
  • A. Basso
  • C. Baiocchi
  • M. Pazzi
  • G. Marcí
  • V. Augugliaro
  • L. Palmisano
  • E. Pramauro
Original Paper


The degradation of Methyl Orange (C14H14N3SO3Na), chosen as a model sulfonated azo dye, was investigated in aqueous solutions containing suspended polycrystalline TiO2 particles under irradiation with simulated sunlight. The dye disappearance and the formation of the mineralization end products were monitored; the formation of the main transient intermediates was also examined in detail. Particular attention was devoted to the identification and to the evolution of fragments retaining the chromophoric group. The comparison of data coming from various analytical techniques led to a possible reaction mechanism for the degradation process, giving insight into an aspect of the treatment which has not been considered in previous studies.


Photocatalytic degradation Decolourisation Azo dyes Methyl Orange Analysis 



The authors wish to thank the MIUR (Rome) for financial support. Funding from COFIN 2000 is also gratefully acknowledged by E.P. and A.B.P.


  1. 1.
    Jackman AP, Powell RL (eds) (1991) Hazardous waste treatment technologies. Noyes Publications, Park Ridge (NJ)Google Scholar
  2. 2.
    Serpone N, Pelizzetti E (eds) (1989) Photocatalysis. Fundamentals and applications. Wiley, New YorkGoogle Scholar
  3. 3.
    Ollis DF, Al-Ekabi H (eds) (1993) Photocatalytic purification and treatment of water and air. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671–698Google Scholar
  5. 5.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96Google Scholar
  6. 6.
    Brillas E, Mur E, Sauleda R, Sanchez L, Peral J, Domenech X, Casado J (1998) J Appl Catal B 16:31–42CrossRefGoogle Scholar
  7. 7.
    Matthews RW (1984) Nature 11:23–28Google Scholar
  8. 8.
    Turchi CS, Ollis DF (1990) J Catal 122:178–192Google Scholar
  9. 9.
    Chen LC, Chou TC (1993) J Mol Catal 85:201–214CrossRefGoogle Scholar
  10. 10.
    Vinodgopal K, Bedja I, Hotchandani S, Kamat PV (1994) Langmuir 10:1767–1771Google Scholar
  11. 11.
    Nasr C, Vinodgopal K, Hotchandani S, Chattopadhyay AK, Kamat PV (1997) Res Chem Intermed 23:219–231Google Scholar
  12. 12.
    Wang Y (2000) Water Res 34:990–994CrossRefGoogle Scholar
  13. 13.
    Tanaka K, Padermpole K, Hisanaga T (2000) Water Res 34:327–333CrossRefGoogle Scholar
  14. 14.
    Zhu C, Wang L, Kong L, Yang X, Wang L, Zheng S, Chen F, Mai Zhi F, Zong H (2000) Chemosphere 41:303–309CrossRefPubMedGoogle Scholar
  15. 15.
    Grzechulska J, Morawski AW (2002) Appl Catalysis B Environ 36:45–51CrossRefGoogle Scholar
  16. 16.
    Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann (2002) J M Appl Catalysis B Environ 39:75–90CrossRefGoogle Scholar
  17. 17.
    Augugliaro V, Baiocchi C, Bianco Prevot A, Garcia Lopez E, Loddo V, Malato S, Marcì G, Palmisano L, Pazzi M, Pramauro E (2002) Chemosphere 49:1223–1230CrossRefPubMedGoogle Scholar
  18. 18.
    Baiocchi C, Brussino MC, Pramauro E, Bianco Prevot A, Palmisano L, Marcì G (2002) Int J Mass Spectrom 214:247–256CrossRefGoogle Scholar
  19. 19.
    Kamat PV, (1990) Langmuir 6:512–513Google Scholar
  20. 20.
    Kamat PV, Das S, Thomas KG, George MV (1991) Chem Phys Lett 178:75–79CrossRefGoogle Scholar
  21. 21.
    Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1999) J Phys Chem 103:4862–4867CrossRefGoogle Scholar
  22. 22.
    Kohrmann C, Bahnemann DW, Hoffmann MR (1988) J Phys Chem 92:5196–5201Google Scholar
  23. 23.
    Mills A, Davies RH, Worsley D (1993) Chem Soc Revs 22:417–425Google Scholar
  24. 24.
    Low G KC, McEvoy SR, Matthews RW (1991) Environ Sci Technol 25:460–467Google Scholar
  25. 25.
    Nohara K, Hidaka H, Pelizzetti E, Serpone N (1996) Catal Lett 36:115–118Google Scholar
  26. 26.
    Nohara K, Hidaka H, Pelizzetti E, Serpone N (1997) J Photochem Photobiol A 102:265–272CrossRefGoogle Scholar
  27. 27.
    Vauthier M, Guillard C, Herrmann JM (2001) J Catal 201:46–59CrossRefGoogle Scholar
  28. 28.
    Abdullah M, Low GKC, Matthews RW (1990) J Phys Chem 94:6820–6825Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. Bianco Prevot
    • 1
  • A. Basso
    • 1
  • C. Baiocchi
    • 1
  • M. Pazzi
    • 1
  • G. Marcí
    • 2
  • V. Augugliaro
    • 2
  • L. Palmisano
    • 2
  • E. Pramauro
    • 1
  1. 1.Dipartimento di Chimica AnaliticaUniversità di TorinoTorinoItaly
  2. 2.Dipartimento di Ingegneria Chimica dei Processi e dei MaterialiUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations