Analytical and Bioanalytical Chemistry

, Volume 378, Issue 2, pp 499–503 | Cite as

LC-APCI-MS-MS methodology for determination of glybenclamide in human plasma

  • Mirian R. L. Moura
  • Gilberto de Nucci
  • Susanne Rath
  • Felix G. R. ReyesEmail author
Original Paper


A liquid chromatographic/atmospheric pressure chemical ionization tandem mass spectrometric method (LC-APCI-MS-MS) for the determination of glybenclamide in human plasma is described. Glypizide, an analogue of glybenclamide, was used as internal standard. The analyte was extracted from plasma with diethyl ether/dichloromethane (70:30 v/v). The chromatography uses C18 and 0.01 mol L−1 acetic acid/acetonitrile (20:80 v/v) as stationary and mobile phase, respectively. Quantitation was preformed by using multiple reaction monitoring (MRM) of the precursor ion (m/z 494.2→368.8) and the related product ion (m/z 446.0→347.3) using the internal standard method. The analytical curve was linear in the range 1–300 ng mL−1, and for a 400-μL sample of human plasma, the limit of determination of the method was 1 ng mL−1. The coefficients of variation of the method for intra-assay (within-run precision) and inter-assay (between-run precision) were less than 10%. The method was shown to be suitable for pharmacokinetic studies.


Glybenclamide Sulfonylureas Plasma Mass spectrometry LC-APCI-MS-MS 



The authors would like to acknowledge the technical assistance of Mr Jaime Ilha and the financial support of FAPESP (Grant No. 98/06007–5). M.R.L.M. thanks CAPES for a scholarship.


  1. 1.
    Al-Khamis KI, El-Sayed YM, Al-Rashood KA, Al-Yamani M (1994) Anal Lett 27:1277–1293Google Scholar
  2. 2.
    Sartor G, Lundquist I, Melander A, Scherstén B, Wahlin-Boll E (1982) J Clin Pharmacol 21:403–405Google Scholar
  3. 3.
    Uihlein M, Sistovaris N (1982) J Chromatogr 227:93–101CrossRefPubMedGoogle Scholar
  4. 4.
    Santurio JRV, Porto EG (1996) J Chromatogr B 682:364–370Google Scholar
  5. 5.
    Hartvig P, Fagerlund C, Gyllenhaal O (1980) J Chromatogr 181:17–24CrossRefPubMedGoogle Scholar
  6. 6.
    Midha KK, McGilveray IJ, Charette C (1976) J Pharm Sci 65:576–579PubMedGoogle Scholar
  7. 7.
    Sener A, Akkan AG, Malaisse WJ (1995) Acta Diabetologia 32:64–68Google Scholar
  8. 8.
    Susanto F, Reinauer H (1996) Fresenius J Anal Chem 356:352–357Google Scholar
  9. 9.
    Tiller PR, Land AP, Jardine I, Murphy DM, Sozio R, Ayrton A, Schaefer WH (1998) J Chromatogr A, 794:15–25Google Scholar
  10. 10.
    Ramos L, Bakhtiar R, Tse F (1999) Rapid Commun Mass Spectrom 13:2443Google Scholar
  11. 11.
    Ifa DR, Moraes ME, Moraes MO, Santagada V, Caliendo G, de Nucci G (2000) J Mass Spectrom 35:440–445CrossRefPubMedGoogle Scholar
  12. 12.
    Zecca L, Trivulzio S, Pinelli, A, Colombo R, Tofanetti O (1985) J Chromatogr 339:203–209CrossRefPubMedGoogle Scholar
  13. 13.
    Abdelhamid ME, Suleiman MS, Elsayed YM, Najib NM, Hasan MM (1989) J Clin Pharm Ther 14:181–188PubMedGoogle Scholar
  14. 14.
    Moura MRL (2001) Konjac fiber: nutritional aspects and interaction with drug (glybenclamide). PhD thesis, College of Food Engineering, State University of Campinas, Brazil, p 88Google Scholar
  15. 15.
    Miller JC, Miller JN (1993) Statistics for analytical chemistry, 3rd edn. Ellis Horwood, p 233Google Scholar
  16. 16.
    Magni F, Marazzini L, Pereira S, Monti L, Kienle MG (2000) Anal Biochem 282:136–141CrossRefPubMedGoogle Scholar
  17. 17.
    Hsieh S, Selinger K (2002) J Chromatogr B 722:347–356Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Mirian R. L. Moura
    • 1
  • Gilberto de Nucci
    • 2
  • Susanne Rath
    • 3
  • Felix G. R. Reyes
    • 1
    Email author
  1. 1.Department of Food ScienceState University of CampinasBrazil
  2. 2.Department of PharmacologyState University of CampinasCampinasBrazil
  3. 3.Department of Analytical ChemistryState University of CampinasCampinasBrazil

Personalised recommendations