Advertisement

Analytical and Bioanalytical Chemistry

, Volume 378, Issue 2, pp 256–269 | Cite as

Mass spectrometric method for the absolute calibration of the intramolecular nitrogen isotope distribution in nitrous oxide

  • Jan Kaiser
  • Sunyoung Park
  • Kristie A. Boering
  • Carl A. M. Brenninkmeijer
  • Andreas Hilkert
  • Thomas Röckmann
Original Paper

Abstract

A mass spectrometric method to determine the absolute intramolecular (position-dependent) nitrogen isotope ratios of nitrous oxide (N2O) has been developed. It is based on the addition of different amounts of doubly labeled 15N2O to an N2O sample of the isotope ratio mass spectrometer reference gas, and subsequent measurement of the relative ion current ratios of species with mass 30, 31, 44, 45, and 46. All relevant quantities are measured by isotope ratio mass spectrometers, which means that the machines’ inherent high precision of the order of 10−5 can be fully exploited. External determination of dilution factors with generally lower precision is avoided. The method itself can be implemented within a day, but a calibration of the oxygen and average nitrogen isotope ratios relative to a primary isotopic reference material of known absolute isotopic composition has to be performed separately. The underlying theoretical framework is explored in depth. The effect of interferences due to 14N15N16O and 15N14N16O in the 15N2O sample and due to 15N 2 + formation are fully accounted for in the calculation of the final position-dependent nitrogen isotope ratios. Considering all known statistical uncertainties of measured quantities and absolute isotope ratios of primary isotopic reference materials, we achieve an overall uncertainty of 0.9‰ (1σ). Using tropospheric N2O as common reference point for intercomparison purposes, we find a substantially higher relative enrichment of 15N at the central nitrogen atom over 15N at the terminal nitrogen atom than measured previously for tropospheric N2O based on a chemical conversion method: 46.3±1.4‰ as opposed to 18.7±2.2‰. However, our method depends critically on the absolute isotope ratios of the primary isotopic reference materials air–N2 and VSMOW. If they are systematically wrong, our estimates will also necessarily be incorrect.

Keywords

Nitrous oxide Isotopic composition Absolute position-dependent calibration Intramolecular nitrogen isotope ratios Isotope ratio mass spectrometry 

Notes

Acknowledgements

We would like to acknowledge Claus Koeppel and Tae Siek Rhee for help with the mass spectrometric measurements as well as Hairigh Avak and Jens Radke for assistance with the MAT 253 mass spectrometer in the Application Laboratory of Thermo Finnigan MAT, Bremen. Willi Brand is thanked for useful discussions on isotope ratio mass spectrometric finesses. John Crowley helped with the FTIR measurements. The work at UC Berkeley was supported by the US National Science Foundation Atmospheric Chemistry Program (ATM-9901463), the NASA Upper Atmospheric Research Program (NAG2–1483), the David and Lucile Packard Foundation, and the Earth Science Division, Lawrence Berkeley National Laboratory.

References

  1. 1.
    Toyoda S, Yoshida N (1999) Anal Chem 71:4711–4718CrossRefGoogle Scholar
  2. 2.
    Brenninkmeijer CAM, Röckmann T (1999) Rapid Commun Mass Spectrom 13:2028–2033CrossRefPubMedGoogle Scholar
  3. 3.
    Esler MB, Griffith DWT, Turatti F, Wilson SR, Rahn T, Zhang H (2000) Chemosphere Global Change Sci 2:445–454CrossRefGoogle Scholar
  4. 4.
    Uehara K, Yamamoto K, Kikugawa T, Yoshida N (2001) Sens Actuators B 74:173–178CrossRefGoogle Scholar
  5. 5.
    Kaiser J, Röckmann T, Brenninkmeijer CAM (2002) Phys Chem Chem Phys 4:4220–4230. DOI 10.1039/B204837JGoogle Scholar
  6. 6.
    Kaiser J, Röckmann T, Brenninkmeijer CAM, Crutzen PJ (2003) Atmos Chem Phys 3:303–313Google Scholar
  7. 7.
    Kaiser J, Brenninkmeijer CAM, Röckmann T (2002) J Geophys Res 107:4214. DOI10.1029/2001JD001506CrossRefGoogle Scholar
  8. 8.
    Röckmann T, Kaiser J, Brenninkmeijer CAM, Crowley JN, Borchers R, Brand WA, Crutzen PJ (2001) J Geophys Res 106:10403–10410Google Scholar
  9. 9.
    Toyoda S, Yoshida N, Urabe T, Aoki S, Nakazawa T, Sugawara S, Honda H (2001) J Geophys Res 106:7515–7522Google Scholar
  10. 10.
    Griffith DWT, Toon GC, Sen B, Blavier J-F, Toth RA (2000) Geophys Res Lett 27:2485–2488Google Scholar
  11. 11.
    Pérez T, Trumbore SE, Tyler SC, Matson PA, Ortiz-Monasterio I, Rahn T, Griffith DWT (2001) J Geophys Res 106:9869–9878Google Scholar
  12. 12.
    Yamulki S, Toyoda S, Yoshida N, Veldkamp E, Grant B, Bol R (2001) Rapid Commun Mass Spectrom 15:1263–1269CrossRefPubMedGoogle Scholar
  13. 13.
    Popp BN, Westley MB, Toyoda S, Miwa T, Dore JE, Yoshida N, Rust TM, Sansone FJ, Russ ME, Ostrom NE, Ostrom PH (2002) Global Biogeochem Cycles 16:1064. DOI 10.1029/2001GB001806CrossRefGoogle Scholar
  14. 14.
    Toyoda S, Yoshida N, Miwa T, Matsui Y, Yamagishi H, Tsunogai U, Nojiri Y, Tsurushima N (2002) Geophys Res Lett 29:10.1029/2001GL014311CrossRefGoogle Scholar
  15. 15.
    Stein LY, Yung YL (2003) Annu Rev Earth Planet Sci 31:329–356. DOI 10.1146/annurev.earth.31.110502.080901CrossRefGoogle Scholar
  16. 16.
    Friedman L, Bigeleisen J (1950) J Chem Phys 18:1325–1331Google Scholar
  17. 17.
    Kaiser J, Röckmann T, Brenninkmeijer CAM (2003) J Geophys Res 108:4476 DOI 10.1029/2003JD003613Google Scholar
  18. 18.
    Junk G, Svec HJ (1958) Geochim Cosmochim Acta 14:234–243Google Scholar
  19. 19.
    Baertschi P (1976) Earth Planet Sci Lett 31:341–344Google Scholar
  20. 20.
    Li W-J, Ni B, Jin D, Chang T-L (1988) Chin Sci Bull 33:1610–1613Google Scholar
  21. 21.
    Assonov SS, Brenninkmeijer CAM (2003) Rapid Commun Mass Spectrom 17:1017–1029CrossRefPubMedGoogle Scholar
  22. 22.
    De Bièvre P, Valkiers S, Peiser HS, Taylor PDP, Hansen P (1996) Metrologia 33:447–455CrossRefGoogle Scholar
  23. 23.
    Bigeleisen J, Friedman L (1950) J Chem Phys 18:1656–1659Google Scholar
  24. 24.
    Sutka RL, Ostrom NE, Ostrom PH, Gandhi H, Breznak JA (2003) Rapid Commun Mass Spectrom 17:738–745CrossRefPubMedGoogle Scholar
  25. 25.
    Brenna JT, Corso TN, Tobias HJ, Caimi RJ (1997) Mass Spectrom Rev 16:227–258CrossRefPubMedGoogle Scholar
  26. 26.
    Coplen TB (1994) Pure Appl Chem 66:273–276Google Scholar
  27. 27.
    Trolier M, White JWC, Tans PP, Masarie KA, Gemery PA (1996) J Geophys Res 101:25897–25916Google Scholar
  28. 28.
    Craig H (1957) Geochim Cosmochim Acta 12:133–149Google Scholar
  29. 29.
    Gonfiantini R, Stichler W, Rozanski K (1995) In: Reference and intercomparison materials for stable isotopes of light elements. International Atomic Energy Agency, Vienna, pp 13–29Google Scholar
  30. 30.
    Garber EAE, Hollocher TC (1982) J Biol Chem 257:4705–4708PubMedGoogle Scholar
  31. 31.
    Begun GM, Landau L (1961) J Chem Phys 35:547–551Google Scholar
  32. 32.
    Meijer HAJ, Neubert REM, Visser GH (2000) Int J Mass Spectrom 198:45–61CrossRefGoogle Scholar
  33. 33.
    Kaiser J (2002) Stable isotope investigations of atmospheric nitrous oxide. Johannes Gutenberg-Universität, Mainz http://archivmed.uni.mainz.de/pub/2003/0004/diss.pdf
  34. 34.
    Hund E, Massart DL, Smeyers-Verbeke J (2001) Trends Anal Chem 20:394–406CrossRefGoogle Scholar
  35. 35.
    Yoshida N, Toyoda S (2000) Nature 405:330–334CrossRefPubMedGoogle Scholar
  36. 36.
    Coplen TB, Hopple JA, Böhlke JK, Peiser HS, Rieder SE, Krouse HR, Rosman KJR, Ding T, Vocke J, R. D., Révész KM, Lamberty A, Taylor P, De Bièvre P (2002) Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring materials and reagents. US Geological Survey Water-Resources Investigations Report 01–4222, p 41Google Scholar
  37. 37.
    Thiemann M, Scheibler E, Wiegand KW (1991) In: Elvers B, Hawkins S, Schulz G (eds) Ullmann’s encyclopedia of industrial chemistry, Vol A17. VCH Verlagsgesllschaft, Weinheim, pp 293–339Google Scholar
  38. 38.
    Jancso G, van Hook WA (1974) Chem Rev 74:689–750Google Scholar
  39. 39.
    Nørgaard JV, Valkiers S, Van Nevel L, Vendelbo E, Papadakis I, Bréas O, Taylor PDP (2002) Anal Bioanal Chem 374:1147–1154CrossRefPubMedGoogle Scholar
  40. 40.
    Keeling CD (1958) Geochim Cosmochim Acta 13:322–334Google Scholar
  41. 41.
    Chang T-L, Li W-J (1990) Chin Sci Bull 35:290–296Google Scholar
  42. 42.
    Coplen TB, Krouse HR, Böhlke JK (1992) Pure Appl Chem 64:907–908Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Jan Kaiser
    • 1
    • 2
    • 6
  • Sunyoung Park
    • 3
  • Kristie A. Boering
    • 3
    • 4
  • Carl A. M. Brenninkmeijer
    • 1
  • Andreas Hilkert
    • 5
  • Thomas Röckmann
    • 2
  1. 1.Department of Atmospheric ChemistryMax Planck Institute for ChemistryMainzGermany
  2. 2.Atmospheric Physics DivisionMax Planck Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Chemistry, University of California, Berkeley and Earth Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Thermo Finnigan MATBremenGermany
  6. 6.Department of GeosciencesPrinceton UniversityPrincetonUSA

Personalised recommendations