Advertisement

Analytical and Bioanalytical Chemistry

, Volume 377, Issue 6, pp 1007–1013 | Cite as

Analysis of serotonin release from single neuron soma using capillary electrophoresis and laser-induced fluorescence with a pulsed deep-UV NeCu laser

  • Hai Miao
  • Stanislav S. Rubakhin
  • Jonathan V. SweedlerEmail author
Paper in Forefront

Abstract

The use of capillary electrophoresis (CE) with laser-induced fluorescence excited by ultraviolet (UV) lasers in the range 200–300 nm has been restricted by the available wavelengths and expense of UV lasers. The integration of a NeCu deep UV laser operating at 248.6 nm with a single channel CE system with post-column sheath flow detection allows detection limits for serotonin and tryptophan of 3.9×10-8 M and 4.5×10-8 M respectively. Single cell analysis of serotonergic metacerebral cells from the sea slug Aplysia californica yields a value of 800±85 fmol of serotonin in each cell soma. For the first time, serotonin is directly detected in electrically stimulated release from single metacerebral cell soma, with approximately 4% of the serotonin contained in the soma released from a semi-intact preparation with a 2 min electrical stimulation.

Keywords

NeCu laser Capillary electrophoresis Single cell analysis Release Serotonin 

Notes

Acknowledgements

This work was supported by the National Science Foundation (CHE-98–77071) and NIH (MH60261). The authors appreciate the advice and assistance of William Hug and Ray Raid (Photon System Inc.) concerning the operation of the NeCu laser, Xin Zhang (UIUC) for advice on 5-HT measurements, and Sarah Sheeley (UIUC) for assistance with construction of the CE system. A. californica were provided by the NCRR National Resource for Aplysia at the University of Miami.

References

  1. 1.
    Jaffe EH, Marty A, Schulte A, Chow RH (1998) J Neurosci 18:3548–3553PubMedGoogle Scholar
  2. 2.
    Puopolo M, Hochstetler SE, Gustincich S, Wightman RM, Raviola E (2001) Neuron 30:211–225PubMedGoogle Scholar
  3. 3.
    Chen G, Gavin PF, Luo G, Ewing AG (1995) J Neurosci 15:7747–7755PubMedGoogle Scholar
  4. 4.
    Sun Y, Poo MM (1987) Proc Natl Acad Sci USA 84:2540–2544PubMedGoogle Scholar
  5. 5.
    Dan Y, Song HJ, Poo MM (1994) Neuron 13:909–917PubMedGoogle Scholar
  6. 6.
    Huang LM, Neher E (1996) Neuron17:135–145Google Scholar
  7. 7.
    Trueta C, Mendez B, De-Miguel FF (2003) J Physiol 547:405–416CrossRefPubMedGoogle Scholar
  8. 8.
    Betz WJ, Bewick GS, Ridg RM (1992) Neuron 9:805–813PubMedGoogle Scholar
  9. 9.
    Travis ER, Wightman RM (1998) Annu Rev Biophys Biomol Struct 27:77–103CrossRefPubMedGoogle Scholar
  10. 10.
    Dahlgren R, Page JS, Sweedler JV (1999) Anal Chim Acta 400:13–26CrossRefGoogle Scholar
  11. 11.
    Benz WJ, Mao F, Smith CB (1996) Curr Opin Neurobiol 6:365–371Google Scholar
  12. 12.
    Metthews G (1996) Curr Opin Neurobiol 6:358–365Google Scholar
  13. 13.
    Yeung ES (1999) Anal Chem 522A-529AGoogle Scholar
  14. 14.
    Tan W, Haydon PG, Yeung ES (1997) Applied Spectrosc 51:1139–1143Google Scholar
  15. 15.
    Rubakhin SS, Page JS, Monroe BR, Sweedler JV (2001) Electrophoresis 22:3752–3758CrossRefPubMedGoogle Scholar
  16. 16.
    Phillips TM (2001) Luminescence 16:145–152CrossRefPubMedGoogle Scholar
  17. 17.
    Ho AM, Yeung ES (1998) J Chromatogr A 817:377–382Google Scholar
  18. 18.
    Tong W, Yeung ES (1997) J Neurosci Methods 76:193–201CrossRefPubMedGoogle Scholar
  19. 19.
    Tong W, Yeung ES (1997) J Chromatogr B 689:321–325CrossRefGoogle Scholar
  20. 20.
    Miles PR, Mundorf ML, Wightman RM (2002) Synapse 44:188–197CrossRefPubMedGoogle Scholar
  21. 21.
    Bruns D, Jahn R (1995) Nature 377:62–65PubMedGoogle Scholar
  22. 22.
    Finnegan JM, Wightman RM (1995) J Biol Chem 270:5353–5359CrossRefPubMedGoogle Scholar
  23. 23.
    Anderson BB, Ewing AG (1999) J Pharm Biomed Anal 12:15–32CrossRefGoogle Scholar
  24. 24.
    Stuart J, Sweedler JV (2003) Anal Bioanal Chem 375:28–29PubMedGoogle Scholar
  25. 25.
    Zhou SY, Zuo H, Stobaugh JF, Lunte CE, Lunte SM (1995) Anal Chem 67:594–599PubMedGoogle Scholar
  26. 26.
    Rocher C, Bert L, Robert F, Trouvin JH, Renaud B, Jacquot C, Gardier AM (1996) Brain Res 737:221–230PubMedGoogle Scholar
  27. 27.
    Liu YM, Sweedler JV (1995) Anal Chem 67:3421–3426PubMedGoogle Scholar
  28. 28.
    Lillard SJ, Yeung ES, McCloskey MA (1996) Anal Chem 68:2897–2904CrossRefPubMedGoogle Scholar
  29. 29.
    Parpura V, Tong W, Yeung ES, Haydon PG (1998) J Neurosci Methods 82:151–158CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang X, Sweedler JV (2001) Anal Chem 73:5620–5624CrossRefPubMedGoogle Scholar
  31. 31.
    Fuller RR, Moroz LL, Gillette R, Sweedler JV (1998) Neuron 20:173–181PubMedGoogle Scholar
  32. 32.
    Zhang X, Stuart J, Sweedler JV (2002) Anal Bioanal Chem 376:332–343CrossRefGoogle Scholar
  33. 33.
    Stuart JN, Zhang X, Jakubowski JA, Romanova EV, Sweedler JV (2003) J Neurochem 84:1358–1366CrossRefPubMedGoogle Scholar
  34. 34.
    Van de Nesse RJ, Velthorst NH, Brinkman UAT, Gooijer C (1995) J Chromatogr A 704:1–25CrossRefGoogle Scholar
  35. 35.
    Gooijer C, Kok SJ, Ariese F (2000) Analusis 28:679–685Google Scholar
  36. 36.
    Kok SJ, Isberg ICK, Gooijer C, Brinkman UAT, Velthorst NH (1998) Anal Chim Acta 360:109–118CrossRefGoogle Scholar
  37. 37.
    Chan KC, Muschik GM, Issaq HJ (1995) J Chromatogr A 718:203–210CrossRefPubMedGoogle Scholar
  38. 38.
    Paquette DM, Sing R, Banks PR, Waldron KC (1998) J Chromatogr B 714:47–57CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Oldenburg KE, Xi X, Sweedler JV (1997) Analyst 122:1581–1585CrossRefPubMedGoogle Scholar
  41. 41.
    Timperman AT, Khatib K, Sweedler JV (1995) Anal Chem 67:139–144PubMedGoogle Scholar
  42. 42.
    Bowser MT, Kennedy KT (2001) Electrophoresis 22:3668–3676CrossRefPubMedGoogle Scholar
  43. 43.
    Chen DY, Adelhelm K, Cheng XL, Dovichi NJ (1994) Analyst 119:349–352Google Scholar
  44. 44.
    Mank AJG, Velthorst NH, Brinkman UAT, Gooijer CJ (1995) Chromatogr A 695:175–183CrossRefGoogle Scholar
  45. 45.
    Kim WS, Dahlgren RL, Moroz LL, Sweedler JV (2002) Anal Chem 74:5614–5620CrossRefPubMedGoogle Scholar
  46. 46.
    Horn CC, Geizhals CR, Kupfermann I (2001) Brain Res 918:51–59CrossRefPubMedGoogle Scholar
  47. 47.
    Koh HY, Jacklet JW (1999) J Neurosci 19:3818–3826PubMedGoogle Scholar
  48. 48.
    Zerby SE, Ewing AG (1996) Brain Res 712:1–10CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang JQ, Felder M, Connor JA, Poo MM (1994) Nature 368:140–144Google Scholar
  50. 50.
    Timperman AT, Oldensburg KE, Sweedler JV (1995) Anal Chem 67:3421–3426PubMedGoogle Scholar
  51. 51.
    Lee TT, Yeung ES (1992) J Chromatogr A 595:319–325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Hai Miao
    • 1
  • Stanislav S. Rubakhin
    • 1
  • Jonathan V. Sweedler
    • 1
    Email author
  1. 1.Department of Chemistry and the Beckman InstituteUniversity of IllinoisUrbanaUSA

Personalised recommendations