Analytical and Bioanalytical Chemistry

, Volume 377, Issue 4, pp 624–631 | Cite as

Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides

  • Alexey Ivanov
  • Gennady Evtugyn
  • Herman Budnikov
  • Francesco Ricci
  • Danila Moscone
  • Giuseppe Palleschi
Original Paper


Cholinesterase sensors based on screen-printed electrodes modified with polyaniline, 7,7′,8,8′-tetracyanoquinodimethane (TCNQ), and Prussian blue have been developed and tested for detection of anticholinesterase pesticides in aqueous solution and in spiked grape juice. The influence of enzyme source and detection mode on biosensor performance was explored. It was shown that modification of the electrodes results in significant improvement of their analytical characteristics for pesticide determination. Thus, the slopes of the calibration curves obtained with modified electrodes were increased twofold and the detection limits of the pesticides were reduced by factors of 1.6 to 1.8 in comparison with the use of unmodified transducers. The biosensors developed make it possible to detect down to 2×10−8 mol L−1 chloropyrifos-methyl, 5×10−8 mol L−1 coumaphos, and 8×10−9 mol L−1 carbofuran in aqueous solution and grape juice. The optimal conditions for grape juice pretreatment were determined to diminish interference from the sample matrix.


Cholinesterase sensor Biosensor Pesticide detection Grapes testing 







Choline oxidase






Bovine serum albumin


2-Pyridine aldoxime methiodide



Financial support of INTAS (grant No 00-273) is gratefully acknowledged. The authors also thank Professor A. A. Karyakin, Moscow State University, who provided the techniques for polyaniline doping and electrode modification and Professor G. P. Karpacheva, Institute for Petrochemical Synthesis, Russian Academy of Sciences, Moscow, for the synthesized polyaniline.


  1. 1.
    Namba N, Nolte CT, Jackrel J, Grob D (1971) Am J Med 50:475–492Google Scholar
  2. 2.
    Oehme DS, Oehme FW (1985) Vet Human Toxicol 27:22–37Google Scholar
  3. 3.
    Coye MJ, Barnett P, Midtling MJ, Velasco AR, Clements CL, O'Malley MA, Tobin MW (1986) Am J Ind Med 10:399–409Google Scholar
  4. 4.
    Basanta R, Nunez A, Lopez E, Fernandez M, Diaz-Fierros F (1995) Int J Environ Stud 48:211Google Scholar
  5. 5.
    Skladal P (1996) Food Technol Biotechnol 34:43–49Google Scholar
  6. 6.
    Further analysis on presence of residues and impact of plant protection products in EU. European Commission and Dutch Ministry for the Environment (1997)Google Scholar
  7. 7.
    FQPA-targeted pesticide residue study. Michigan University—EPA, Michigan, 1999Google Scholar
  8. 8.
    Navarro S, Oliva J, Barba A, Navarro G, Garcia MA, Zamarano M (2000) J Agric Food Chem 48:3537–3541Google Scholar
  9. 9.
    Marty JL, Garcia D, Rouillon R (1995) Trends Anal Chem 14:329–333Google Scholar
  10. 10.
    Evtugyn GA, Budnikov HC, Nikolskaya EB (1998) Talanta 46:465–484Google Scholar
  11. 11.
    Jaffrezic-Renault N (2001) Sensors 1:60–74Google Scholar
  12. 12.
    La Rosa C, Pariente F, Hernandez L, Lorenzo E (1994) Anal Chim Acta 295:273–282CrossRefGoogle Scholar
  13. 13.
    Hart AL, Collier WA, Janssen D (1997) Biosens Bioelectron 12:645–654Google Scholar
  14. 14.
    Skladal P, Nunes GS, Yamanaka H, Ribeiro ML (1997) Electroanalysis 9:1083–1087Google Scholar
  15. 15.
    Albareda-Sirvent M, Merkoci A, Alegret S (2001) Sens Actuators B 79:48–57CrossRefGoogle Scholar
  16. 16.
    Ivanov AN, Evtugyn GA, Gyurcsanyi RE, Toth K, Budnikov HC (2000) Anal Chim Acta 404:55–65Google Scholar
  17. 17.
    Starodub NF, Kanjuk NI, Kukla AL, Shirshov YM (1999) Anal Chim Acta 385:461–466Google Scholar
  18. 18.
    Dumschat C, Muller H, Stein K, Schwedt G (1991) Anal Chim Acta 252:7–10Google Scholar
  19. 19.
    Dzyadevich SV, Shul'ga A, Soldatkin AP, Hendji AMN, Jaffrezic-Renault N, Martelet C (1994) Electroanalysis 6:752–758Google Scholar
  20. 20.
    Rehak M, Snejdarkova M, Hianik T (1997) Electroanalysis 9:1072–1077Google Scholar
  21. 21.
    Palchetti I, Cagnini A, Del Carlo M, Coppi C, Mascini M, Turner APF (1997) Anal Chim Acta 337:315–321Google Scholar
  22. 22.
    Doretti L, Ferrara D, Lora S, Palma G (1999) Biotechnol Appl Biochem 29:67–72Google Scholar
  23. 23.
    Karyakin AA, Karyakina EE (1999) Sens Actuators B 57:268–273CrossRefGoogle Scholar
  24. 24.
    O'Halloran MP, Pravda M, Guilbault GG (2001) Talanta 55:605–611CrossRefGoogle Scholar
  25. 25.
    Garjonyte R, Malinauskas A (2000) Biosens Bioelectron 15:445–451Google Scholar
  26. 26.
    Deng Q, Li B, Dong S (1998) Analyst 123:1995–1999Google Scholar
  27. 27.
    Brainina Kh, Henze G, Stojko N, Malakhova N, Faller C (1999) Fresenius J Anal Chem 364:285–295CrossRefGoogle Scholar
  28. 28.
    Bachmann TT, Schmid RD (1999) Anal Chim Acta 401:95–103Google Scholar
  29. 29.
    Ricci F, Amine A, Palleschi G, Moscone D (2003) Biosens Bioelectron 18:165–174CrossRefPubMedGoogle Scholar
  30. 30.
    MacDiarmid AG, Epstein A (1989) Faraday Discuss Chem Soc 317–332Google Scholar
  31. 31.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) Biochem Pharmacol 7:88–95Google Scholar
  32. 32.
    Evtugyn GA, Rizaeva EP, Stoikova EE, Budnikov HC (1997) Electroanalysis 9:1124–1128Google Scholar
  33. 33.
    Ivanov AN, Lukachova LV, Evtugyn GA, Karyakina EE, Kiseleva SG, Budnikov HC, Orlov AV, Karpacheva GP, Karyakin AA (2002) Bioelectrochemistry 55:75–77Google Scholar
  34. 34.
    Brestkin AP, Rozengart EV, Abdulvachabov AA, Sadikov AS (1983) Uspekhi Khimii 52:1624–1647Google Scholar
  35. 35.
    Evtugyn GA, Budnikov HC, Nikolskaya EB (1996) Analyst 121:1911–1915Google Scholar
  36. 36.
    Gogol EV, Evtugyn GA, Marty JL, Budnikov HC, Winter VG (2000) Talanta 53:379–389Google Scholar
  37. 37.
    Martorell D, Cespedes F, Martinez-Fabregas E, Alegret S (1994) Anal Chim Acta 290:343–348Google Scholar
  38. 38.
    Kindervater R, Kunnecke W, Schmid RD (1990) Anal Chim Acta 234:113Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Alexey Ivanov
    • 1
  • Gennady Evtugyn
    • 1
  • Herman Budnikov
    • 1
  • Francesco Ricci
    • 2
  • Danila Moscone
    • 2
  • Giuseppe Palleschi
    • 2
  1. 1.Chemistry DepartmentKazan State UniversityKazanRussia
  2. 2.Dipartimento di Science e Technologie ChimicheUniversita di Roma "Tor Vergata" via della Ricerca ScientificaRomaItaly

Personalised recommendations