Advertisement

Analytical and Bioanalytical Chemistry

, Volume 377, Issue 7–8, pp 1133–1139 | Cite as

Cluster calibration in mass spectrometry: laser desorption/ionization studies of atomic clusters and an application in precision mass spectrometry

  • K. Blaum
  • A. Herlert
  • G. Huber
  • H.-J. Kluge
  • J. Maul
  • L. Schweikhard
Special Issue Paper

Abstract

For accurate mass measurements and identification of atomic and molecular species precise mass calibration is mandatory. Recent studies with laser desorption/ionization and time-of-flight analysis of cluster ion production by use of fullerene and gold targets demonstrate the generation of atomic clusters for calibration purposes. Atomic ion results from the Penning trap mass spectrometer ISOLTRAP, in which a carbon cluster ion source has recently been installed, are presented as an application in the field of precision mass spectrometry.

Keywords

Atomic masses Carbon clusters Cluster calibration Fullerenes Gold clusters Laser desorption/ionization MALDI–TOF Mass spectra Mass spectrometry 

Notes

Acknowledgment

The support of the German Federal Ministry of Education and Research (BMBF) is gratefully acknowledged.

References

  1. 1.
    Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35CrossRefPubMedGoogle Scholar
  2. 2.
    Arnould M, Takahashi K (1999) Rep Prog Phys 62:395–464CrossRefGoogle Scholar
  3. 3.
    Schwarz S, Ames F, Audi G, Beck D, Bollen G, De Coster C, Dilling J, Engels O, García-Ramos RJE, Henry S, Herfurth F, Heyde K, Kellerbauer A, Kluge HJ, Kohl A, Lamour E, Lunney MD, Martel I, Moore RB, Oinonen M, Raimbault-Hartmann H, Scheidenberger C, Sikler G, Szerypo J, Weber C (2001) Nucl Phys A 693:533–545CrossRefGoogle Scholar
  4. 4.
    Paul A, Röttger S, Zimbal A, Keyser U (2001) Hyp Int 132:189–194CrossRefGoogle Scholar
  5. 5.
    Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163Google Scholar
  6. 6.
    Smalley RE (1992) Acc Chem Res 25:98–105Google Scholar
  7. 7.
    Kroto H (1988) Science 242:1139–1145Google Scholar
  8. 8.
    Wurz P, Lykke KR (1994) Chem Phys 184:335–346CrossRefGoogle Scholar
  9. 9.
    Brack M (1993) Rev Mod Phys 65:677–732CrossRefGoogle Scholar
  10. 10.
    Manninen M, Mansikkaaho J, Nishioka H, Takahashi Y (1994) Z Phys D 31:259–267Google Scholar
  11. 11.
    Katakuse I, Ichihara T, Fujita Y, Matsuo T, Sakurai T, Matsuda H (1986) Int J Mass Spectrom Ion Processes 74:33–41CrossRefGoogle Scholar
  12. 12.
    Selinger A, Schnabel P, Wiese W, Irion MP (1990) Ber Bunsenges Phys Chem 94:1278–1282Google Scholar
  13. 13.
    Becker S, Dietrich G, Hasse HU, Klisch N, Kluge HJ, Kreisle D, Krückeberg S, Lindinger M, Lützenkirchen K, Schweikhard L, Weidele H, Ziegler J (1994) Z Phys D 30:341–348Google Scholar
  14. 14.
    Ziegler J, Dietrich G, Krückeberg S, Lützenkirchen K, Schweikhard L, Walther C (1998) Hyp Int 115:171–179CrossRefGoogle Scholar
  15. 15.
    Herlert A, Krückeberg S, Schweikhard L, Vogel M, Walther C (2000) J Electron Spectrosc Relat Phenom 106:179–186CrossRefGoogle Scholar
  16. 16.
    Herlert A, Krückeberg S, Schweikhard L, Vogel M, Walther C (1999) Physica Scripta T80:200–202CrossRefGoogle Scholar
  17. 17.
    Stoermer C, Friedrich J, Kappes MM (2001) Int J Mass Spectrom 206:63–78CrossRefGoogle Scholar
  18. 18.
    Martin TP, Bergmann T, Gohlich H, Lange T (1990) Z Phys Chem 169:73–83Google Scholar
  19. 19.
    Bollen G, Becker S, Kluge HJ, König M, Moore RB, Otto T, Raimbault-Hartmann H, Savard G, Schweikhard L, Stolzenberg H (1996) Nucl Instrum Methods A 368:675–697CrossRefGoogle Scholar
  20. 20.
    Kugler E (2000) Hyp Int 129:23–42CrossRefGoogle Scholar
  21. 21.
    Herfurth F, Ames F, Audi G, Beck D, Blaum K, Bollen G, Kellerbauer A, Kluge HJ, Kuckein M, Lunney D, Moore RB, Oinonen M, Rodríguez D, Sauvan E, Scheidenberger C, Schwarz S, Sikler G, Weber C (2003) J Phys B 36:931–939CrossRefGoogle Scholar
  22. 22.
    Blaum K, Bollen G, Herfurth F, Kellerbauer A, Kluge HJ, Kuckein M, Sauvan E, Scheidenberger C, Schweikhard L (2002) Eur Phys J A 15:245–248CrossRefGoogle Scholar
  23. 23.
    Kellerbauer A, Blaum K, Bollen G, Herfurth F, Kluge HJ, Kuckein M, Sauvan E, Scheidenberger C, Schweikhard L (2003) Eur Phys J D 22:53–64CrossRefGoogle Scholar
  24. 24.
    Savard G, Becker S, Bollen G, Kluge HJ, Moore RB, Otto T, Schweikhard L, Stolzenberg H, Wiess U (1991) Phys Lett A 158:247–252CrossRefGoogle Scholar
  25. 25.
    Gräff G, Kalinowsky H, Traut J (1980) Z Phys A 297:35–38Google Scholar
  26. 26.
    König M, Bollen G, Kluge HJ, Otto T, Szerypo J (1995) Int J Mass Spectrom Ion Proc 142:95–116CrossRefGoogle Scholar
  27. 27.
    Beck D, Ames F, Audi G, Bollen G, Kluge HJ, Kohl A, König M, Lunney D, Raimbault-Hartmann H, Schwarz S, Szerypo J (1997) Nucl Instrum Methods B 126:374–377Google Scholar
  28. 28.
    Bollen G, Kluge HJ, König M, Otto T, Savard G, Stolzenberg H, Moore RB, Rouleau G, Audi G (1992) Phys Rev C 46:R2140–R2143CrossRefGoogle Scholar
  29. 29.
    Blaum K, Audi G, Beck D, Bollen G, Herfurth F, Kluge HJ, Kellerbauer A, Sauvan E, Schwarz S (2003) Phys Rev Lett, submitted for publicationGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • K. Blaum
    • 1
    • 2
  • A. Herlert
    • 3
  • G. Huber
    • 3
  • H.-J. Kluge
    • 2
  • J. Maul
    • 3
  • L. Schweikhard
    • 4
  1. 1.Division EP-ISEuropean Organization for Nuclear Research (CERN)Genèva 23Switzerland
  2. 2.Gesellschaft für Schwerionenforschung (GSI) DarmstadtDarmstadtGermany
  3. 3.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.Institut für PhysikErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations