Analytical and Bioanalytical Chemistry

, Volume 377, Issue 4, pp 702–708 | Cite as

Isolation of free phenolic compounds from arboreal leaves by use of the Florisil/C18 system

  • Jadwiga Jaroszyńska
Original Paper


In studies of the phenolic compounds present in leaves and needles, GC and GC–MS have so far been applied only sporadically. This is probably because of the greater difficulties encountered in preparing the samples for this method than those used for liquid chromatography. When preparing a sample for gas chromatography the analyst is faced with two difficult stages—separation of the compound from the matrix without losses (stage 1) so that the final sample can be derivatized to make it suitable for analysis on a non-polar capillary column of the gas chromatograph (stage 2). This paper presents a procedure for extraction of phenolic compounds from the matrix by means of a Florisil/C18 sorbent system and their analysis by GC. After passage through the adsorbents the recovery ranges from 32% for ferulic acid to 88% for gentisic acid. It was found that this extraction method and the GC analysis are very precise (particularly for samples of a mass <1 g) and can be used for quantification. The high-precision quantification of 15 phenolic acids, shikimic acid, and six other compounds present in pine needles has been achieved. The conditions used for GC analysis and construction of calibration curves for quantitative determination are given.


Phenolic acids Shikimic acid SPE Florisil Plant sample 


  1. 1.
    Harborne JB (1964) Biochemistry of phenolic compounds. Academic Press, New York, pp 523–537Google Scholar
  2. 2.
    Klejdus B, Kubáň V (1999) Chem Listy 93:243–248Google Scholar
  3. 3.
    Holopainen JK, Rikola R, Kainulainen P, Oksanen J (1995) New Phytol 131:521–532Google Scholar
  4. 4.
    Whitehead DC, Dibb H, Hartley RD (1982) J Appl Ecol 19:579–588Google Scholar
  5. 5.
    Dalton BR, Blum U, Weed SB (1989) Soil Sci Soc Am J 53:757–762Google Scholar
  6. 6.
    Harborne JB (1997) Introduction to ecological biochemistry. PWN, Warsaw, pp 17–20Google Scholar
  7. 7.
    Kohlmünzer S (1993) Farmakognozja. PZWL, Warsaw, p 90Google Scholar
  8. 8.
    Shumejko P, Ossipov V, Neuvonen S (1996) Environ Pollut 92:315–321CrossRefGoogle Scholar
  9. 9.
    Ossipov V, Loponen J, Ossipova S, Haukioja E, Pihlaja K (1997) Biochem Syst Ecol 25:493–504CrossRefGoogle Scholar
  10. 10.
    Sierota ZH, Gayny B, Łuczko A (1998) Trees 12:230–235CrossRefGoogle Scholar
  11. 11.
    Keinänen M, Julkunen-Tiitto R (1998) J Chromatogr A 793:370–377CrossRefGoogle Scholar
  12. 12.
    Loponen J, Ossipov V, Lempa K, Haukioja E, Pihlaja K (1998) Chemosphere 37:1445–1456CrossRefGoogle Scholar
  13. 13.
    Karolewski P, Giertych M (1995) Eur J Forest Pathol 25:297–306Google Scholar
  14. 14.
    Giertych M, Karolewski P, de Temmerman L (1999) Water, Air Soil Pollut 110:363–377Google Scholar
  15. 15.
    Pomponio R, Gotti R, Hudaib M, Cavrini V (2002) J Chromatogr A 945:239–247CrossRefPubMedGoogle Scholar
  16. 16.
    Hierman A, Radl B (1998) J Chromatogr A 803:311–314CrossRefGoogle Scholar
  17. 17.
    Sheu S-J, Chieh Ch-L, Weng Wu-Ch (2001) J Chromatogr A 911:285–293CrossRefPubMedGoogle Scholar
  18. 18.
    Ossipov V, Nurmi K, Loponen J, Prokopiev N, Haukioja E, Pihlaja K (1995) Biochem Sys Ecol 23:213–222CrossRefGoogle Scholar
  19. 19.
    Casal S, Andrade PB, Oliveira MB, Ferreres F, Garciaviguera C, Ferreira MA (1999) J Liq Chromatogr Related Technol 22:513–521CrossRefGoogle Scholar
  20. 20.
    Hawryl MA, Soczewinski E, Dzido TH (2000) J Chromatogr A 886:75–81CrossRefPubMedGoogle Scholar
  21. 21.
    Greenaway W, May J, Scaysbrook T, Whatley FR (1992) Z Naturforsch 47c:773–775Google Scholar
  22. 22.
    Chu T-Y, Chang Ch-H, Liao Y-Ch, Chen Yu-Ch (2001) Talanta 54:1163–1171CrossRefGoogle Scholar
  23. 23.
    Soleas GJ, Dam J, Carey M, Godberg DM (1997) J Agric Food Chem 45:3871–3880CrossRefGoogle Scholar
  24. 24.
    Tura D, Robards K (2002) J Chromatogr A 975:71–93CrossRefPubMedGoogle Scholar
  25. 25.
    Guedon DJ, Pasquier BP (1994) J Agric Food Chem 42:679–684Google Scholar
  26. 26.
    Tagashira M, Ohtake Y (1998) Planta Med 64:555–559Google Scholar
  27. 27.
    Čaniová A, Brandšteterová E (2001) Chem Anal (Warsaw) 46:757–780Google Scholar
  28. 28.
    Buszewski B, Šebeková K, Božek P, Štibrány L, Jendrichovský J, Novák I, Berek D (1986) Chromatographia 22:299–302Google Scholar
  29. 29.
    Buszewski B (1990) J Pharm Biomed Analysis 8:645–649CrossRefGoogle Scholar
  30. 30.
    Ryan D, Robards K, Lavee S (1999) J Chromatogr A 832:87–96CrossRefGoogle Scholar
  31. 31.
    Chilla C, Guillén DA, Barroso CG, Pérez-Bustamate JA (1996) J Chromatogr A 750:209–214CrossRefGoogle Scholar
  32. 32.
    Andrade PB, Seabra RM, Valentao P, Areias F (1998) J Liq Chromatogr Related Technol 21:2813–2820Google Scholar
  33. 33.
    Głowniak K, Zgórka G, Kozyra M (1996) J Chromatogr A 730:25–29Google Scholar
  34. 34.
    Markowski W, Czapińska LK, Józefczyk AJ, Głowniak K (1996) Eur J Pharm Sci 4:127Google Scholar
  35. 35.
    Zgórka G, Dragan T, Głowniak K, Basiura E (1998) J Chromatogr A 797:305–309CrossRefPubMedGoogle Scholar
  36. 36.
    Snyder LR (1963) J Chromatogr 12:488–494CrossRefGoogle Scholar
  37. 37.
    Waksmundzka-Hajnos M (1998) Chem Anal (Warsaw) 43:301–324Google Scholar
  38. 38.
    Causon R (1997) J Chromatogr B 689:175–180CrossRefGoogle Scholar
  39. 39.
    Watanabe T, Yamamoto A, Nagai S, Terabe S (1998) J Chromatogr A 793:409–413PubMedGoogle Scholar
  40. 40.
    Sheu S-L, Chen H-R (1995) J Chromatogr A 704:141–148CrossRefGoogle Scholar
  41. 41.
    Handbook of chemistry and physics (2001–2002), 82nd edn. CRC Press, Boca Raton, pp 8/46–8/56Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of BialystokBialystokPoland

Personalised recommendations