Analytical and Bioanalytical Chemistry

, Volume 377, Issue 3, pp 486–495

Biological application of microelectrode arrays in drug discovery and basic research

  • Alfred Stett
  • Ulrich Egert
  • Elke Guenther
  • Frank Hofmann
  • Thomas Meyer
  • Wilfried Nisch
  • Hugo Haemmerle


Electrical activity of electrogenic cells in neuronal and cardiac tissue can be recorded by means of microelectrode arrays (MEAs) that offer the unique possibility for non-invasive extracellular recording from as many as 60 sites simultaneously. Since its introduction 30 years ago, the technology and the related culture methods for electrophysiological cell and tissue assays have been continually improved and have found their way into many academic and industrial laboratories. Currently, this technology is attracting increased interest owing to the industrial need to screen selected compounds against ion channel targets in their native environment at organic, cellular, and sub-cellular level.

As the MEA technology can be applied to any electrogenic tissue (i.e., central and peripheral neurons, heart cells, and muscle cells), the MEA biosensor is an ideal in vitro system to monitor both acute and chronic effects of drugs and toxins and to perform functional studies under physiological or induced pathophysiological conditions that mimic in vivo damages. By recording the electrical response of various locations on a tissue, a spatial map of drug effects at different sites can be generated, providing important clues about a drug's specificity.

In this survey, examples of MEA biosensor applications are described that have been developed for drug screening and discovery and safety pharmacology in the field of cardiac and neural research. Additionally, biophysical basics of recording and concepts for analysis of extracellular electrical signals are presented.


Drug discovery Safety pharmacology Organotypic tissue culture Cell culture Ion channel Microelectrode array Field potential Electrophysiology 



action potential


dentate gyrus


entorhinal cortex






local field potentials


microelectrode array


peri-stimulus–time histogram


signal-to-noise ratio


  1. 1.
    Lehmann-Horn F, Jurkat-Rott K (1999) Physiol Rev 79:1317–1372PubMedGoogle Scholar
  2. 2.
    Owen D, Silverthorne A (2002) Drug Discovery World 3:48–61Google Scholar
  3. 3.
    Stett A, Burckhardt C, Weber U, van Stiphout P, Knott T (2003) Recept Channels 9:59–66PubMedGoogle Scholar
  4. 4.
    Willumsen NJ, Bech M, Olesen S-P, Jensen BS, Korsgaard MPG, Christophersen P (2003) Recept Channels 9:3–12PubMedGoogle Scholar
  5. 5.
    Thomas CA, Springer PA, Loeb GE, Berwald-Netter Y, Okun LM (1972) Exp Cell Res 74:61–66PubMedGoogle Scholar
  6. 6.
    Potter SM (2001) Prog Brain Res 130:49–62PubMedGoogle Scholar
  7. 7. Cited 8 April 2003Google Scholar
  8. 8.
    Bucher V, Schubert M, Kern D, Nisch W (2001) Microelectron Eng 57–58:705–712Google Scholar
  9. 9.
    Janders M, Egert U, Stelzle M, Nisch W (1996) Proc 18th Ann Int Conf IEEE Eng Med Biol Soc, p 364Google Scholar
  10. 10.
    Bucher V, Graf M, Stelzle M, Nisch W (1999) Biosens Bioelectron 14:639–649CrossRefGoogle Scholar
  11. 11.
    Nisch W, Böck J, Haemmerle H, Mohr A (1994) Biosens Bioelectron 9:737–741CrossRefPubMedGoogle Scholar
  12. 12.
    Haemmerle H, Egert U, Mohr A, Nisch W (1994) Biosens Bioelectron 9:691–696CrossRefPubMedGoogle Scholar
  13. 13.
    Bucher V, Brunner B, Leibrock C, Schubert M, Nisch W (2001) Biosens Bioelectron 16:205–10CrossRefPubMedGoogle Scholar
  14. 14.
    Egert U, Schlosshauer B, Fennrich S, Nisch W, Fejtl M, Knott T, Haemmerle H (1998) Brain Res Protoc 2:229–242Google Scholar
  15. 15.
    Hofmann F, Leibrock C, Volkmer H, Haemmerle H (2000) Restor Neurol Neurosci 16:54Google Scholar
  16. 16.
    Knott T (2001) Osnabrück. Der Andere VerlagGoogle Scholar
  17. 17.
    Leibrock C, Hofmann F, Haemmerle H (2001) Soc Neurosci Abstr 982.2Google Scholar
  18. 18.
    Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E (2000) Vis Res 40:1785–1795CrossRefPubMedGoogle Scholar
  19. 19.
    Hofmann F, Fejtl M, Egert U, Haemmerle H (1999) Proceedings of the 27th Göttingen neurobiology conference. Thieme, Stuttgart 2:537:Google Scholar
  20. 20.
    Egert U, Haemmerle H (2002) In: Baselt JP, Gerlach G (eds) Sensoren im Fokus neuer Anwendungen. w.e.b. Universitätsverlag, Dresden, pp 51–54Google Scholar
  21. 21.
    Egert U, Knott T, Schwarz C, Nawrot M, Brandt A, Rotter S, Diesmann M (2002) J Neurosci Methods 117:33–42CrossRefPubMedGoogle Scholar
  22. 22.
    Halbach MD, Egert U, Hescheler J, Banach K (2002) Biophys J 82:457Google Scholar
  23. 23.
    Halbach MD, Egert U, Hescheler J, Banach K (2003) Cell Physiol BiochemGoogle Scholar
  24. 24.
    Droge MH, Gross GW, Hightower MH, Czisny LE (1986) J Neurosci 6:1583–92PubMedGoogle Scholar
  25. 25.
    Meister M, Pine J, Baylor DA (1994) J Neurosci Methods 51:95–106PubMedGoogle Scholar
  26. 26.
    Gramowski A, Schiffmann D, Gross GW (2000) Neurotoxicology 21:331–42PubMedGoogle Scholar
  27. 27.
    Gholmieh G, Soussou W, Courellis S, Marmarelis V, Berger T, Baudry M (2001) Biosens Bioelectron 16:491–501CrossRefPubMedGoogle Scholar
  28. 28.
    Streit J, Tscherter A, Heuschkel MO, Renaud P (2001) Eur J Neurosci 14:191–202CrossRefPubMedGoogle Scholar
  29. 29.
    Besl B, Fromherz P (2002) Eur J Neurosci 15:999–1005PubMedGoogle Scholar
  30. 30.
    Shimono K, Baudry M, Panchenko V, Taketani M (2002) J Neurosci Methods 120:193–202CrossRefPubMedGoogle Scholar
  31. 31.
    Banach K, Halbach M, Hu P, Hescheler J, Egert U (2003) Am J PhysiolGoogle Scholar
  32. 32. Cited 8 April 2003Google Scholar
  33. 33.
    Ronn LC, Olsen M, Ostergaard S, Kiselyov V, Berezin V, Mortensen MT, Lerche MH, Jensen PH, Soroka V, Saffell JL, Doherty P, Poulsen FM, Bock E, Holm A, Saffells JL (1999) Nat Biotechnol 17:1000–1005CrossRefPubMedGoogle Scholar
  34. 34.
    Johnston D, Wu SM-S (1995) In: Foundations of cellular neurophysiology. MIT Press, Cambridge, Massachusetts, pp 423–440Google Scholar
  35. 35.
    Egert U, Heck D, Aertsen A (2002) Exp Brain Res 142:268–274CrossRefPubMedGoogle Scholar
  36. 36.
    Lind R, Connolly P, Wilkinson CDW, Thomson RD (1991) Sens Actuators B 3:23–30CrossRefGoogle Scholar
  37. 37.
    Fromherz P (2002) Eur Biophys J 31:228–231CrossRefPubMedGoogle Scholar
  38. 38.
    Buitenweg JR, Rutten WLC, Marani E (2003) IEEE Trans Biomed Eng 50Google Scholar
  39. 39.
    Buitenweg JR, Rutten WL, Marani E (2002) IEEE Trans Biomed Eng 49:1580–90CrossRefPubMedGoogle Scholar
  40. 40.
    Fromherz P (2003) In: Waser R (ed) Nanoelectronics and information technology. Wiley-VCH, Berlin, pp 781–810Google Scholar
  41. 41.
    Nicolelis MAL (1999) In: Nicolelis MAL (ed) Methods for neural ensemble recordings. CRC Press, Boca RatonGoogle Scholar
  42. 42.
    Kleber AG, Fast VG, Kucera J, Rohr S (1996) Zeitschrift für Kardiologie 85:25–33Google Scholar
  43. 43.
    Banach K, Egert U, Juergen H (2001) Biophys J 80:2909Google Scholar
  44. 44.
    Banach K, Hescheler E, Egert U (2002) Biophys J 82:474PubMedGoogle Scholar
  45. 45.
    Jost B, Aertsen A, Egert U (2002) FENS Abstr 1:A012.11Google Scholar
  46. 46.
    Gross GW, Harsch A, Rhoades BK, Göpel W (1997) Biosens Bioelectron 12:373–393PubMedGoogle Scholar
  47. 47.
    Krupa DJ, Nicolelis MA (2000) Prog Brain Res 128:161–172PubMedGoogle Scholar
  48. 48.
    Laubach M, Wessberg J, Nicolelis MA (2000) Nature 405:567–571CrossRefPubMedGoogle Scholar
  49. 49.
    Aertsen AMHJ, Gerstein GL (1985) Brain Res 340:341–354CrossRefPubMedGoogle Scholar
  50. 50.
    Gerstein G, Aertsen A, Bloom M, Espinosa E, Evanczuk S, Turner M (1985) In: Haken H (ed) Complex systems—operational approaches. Springer, Berlin Heidelberg New York, pp 58–70Google Scholar
  51. 51.
    Abeles M, Gerstein GL (1988) J Neurophysiol 60:909–925PubMedGoogle Scholar
  52. 52.
    Kirkland KL, Sillito AM, Jones HE, West DC, Gerstein GL (2000) J Neurophysiol 84:1863–1868PubMedGoogle Scholar
  53. 53.
    Kisley MA, Gerstein GL (2001) Eur J Neurosci 13:1993–2003CrossRefPubMedGoogle Scholar
  54. 54.
    Welsh JP, Schwarz C (1999) In: Nicolelis MAL (ed) Methods for neural ensemble recordings. CRC Press, Boca Raton, pp 79–100Google Scholar
  55. 55.
    Nicolelis MA, Katz D, Krupa DJ (1998) Rev Neurosci 9:213–224Google Scholar
  56. 56.
    Gundlfinger A, Metzger F, Aertsen A, Egert U (2002) FENS Abstr 1:A104.5Google Scholar
  57. 57.
    Gerstein GL (2000) J Neurosci Methods 100:41–51CrossRefPubMedGoogle Scholar
  58. 58.
    Eckhorn R (1986) J Neurosci 29:165–166Google Scholar
  59. 59.
    Eckhorn R, Stett A, Schanze T, Gekeler F, Schwahn H, Zrenner E, Wilms M, Eger M, Hesse L (2001) Ophthalmologe 98:369–375CrossRefPubMedGoogle Scholar
  60. 60.
    Frien A, Eckhorn R (2000) Eur J Neurosci 12:1466–1478PubMedGoogle Scholar
  61. 61.
    Roth SH, Bland BH, MacIver BM (1983) Prog Neuro-Psychoph 7:821–825Google Scholar
  62. 62.
    Deadwyler SA, West JR, Cotman CW, Lynch GS (1975) J Neurophysiol 38:167–184PubMedGoogle Scholar
  63. 63.
    Abe H, Ogata N (1981) Jap J Pharmacol 31:661–675Google Scholar
  64. 64.
    Abraham WC, Manis PB, Hunter BE, Zornetzer SF, Walker DW (1982) Brain Res 237:91–105CrossRefPubMedGoogle Scholar
  65. 65.
    Granger R, Whitson J, Larson J, Lynch G (1994) Proc Natl Acad Sci USA 91:10104–10108PubMedGoogle Scholar
  66. 66.
    Avoli M, Psarropoulou C, Tancredi V, Fueta Y (1993) J Neurophysiol 70:1018–1029PubMedGoogle Scholar
  67. 67.
    Kolta A, Ambros-Ingerson J, Lynch G (1996) Brain Res 737:133–145CrossRefPubMedGoogle Scholar
  68. 68.
    Borroni A, Chen FM, LeCursi N, Grover LM, Teyler TJ (1991) J Neurosci Methods 36:177–184CrossRefPubMedGoogle Scholar
  69. 69.
    Robert F, Correges P, Duport S, Stoppini L (1997) Curr Sep 16:3–10Google Scholar
  70. 70.
    Straub B, Meyer E, Fromherz P (2001) Nat Biotechnol 19:121–4CrossRefPubMedGoogle Scholar
  71. 71. Cited 8 April 2003Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Alfred Stett
    • 1
  • Ulrich Egert
    • 2
  • Elke Guenther
    • 1
  • Frank Hofmann
    • 1
  • Thomas Meyer
    • 3
  • Wilfried Nisch
    • 1
  • Hugo Haemmerle
    • 1
  1. 1.NMI Naturwissenschaftliches und Medizinisches Institut an der Universität TübingenReutlingenGermany
  2. 2.Neurobiology and Biophysics, Institute for Biology IIIAlbert-Ludwigs University FreiburgFreiburgGermany
  3. 3.Multi Channel Systems MCS GmbHReutlingenGermany

Personalised recommendations