Analytical and Bioanalytical Chemistry

, Volume 377, Issue 3, pp 427–433

Olfactory receptors: molecular basis for recognition and discrimination of odors

Review

Abstract

The daunting task of our nose to detect and discriminate among thousands of low-molecular-weight organic compounds with diverse chemical structures and properties requires an enormous molecular recognition capacity. This is based on distinct proteins, capable of recognizing and binding odorous compounds, including odorant-binding proteins, which are supposed to shuttle odorous compounds through the nasal mucus, and most notably the odorant receptors, which are heptahelical membrane proteins coupling via G-proteins onto intracellular transduction cascades. From more than a thousand genes each olfactory neuron is supposed to express only one receptor subtype. Receptors appear to be selective but rather non-specific—i.e. a distinct odorant activates multiple receptors and individual receptors respond to multiple odorants. It is the molecular receptive range of its receptor type which determines the reaction spectrum of a sensory neuron. Populations of cells equipped with the same receptor type project their axons to common glomeruli, thereby transmitting the molecular receptive range of a receptor type into the receptive field of glomerulus. Recent insight into the molecular basis of odor recognition and the combinatorial coding principles of the olfactory system may provide some clues for the design and development of technical sensors, electronic noses. In this review more emphasis has been placed on physiological rather than analytical aspects.

Keywords

Odorant receptors Binding-proteins Gene family Sensory neurons Projection Plfactory bulb 

References

  1. 1.
    Farbman AI (1992) Cell biology of olfaction. Cambridge University Press, UKGoogle Scholar
  2. 2.
    Doty RL (1995) Handbook of olfaction and gustation. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Finger TE, Restrepo D, Silver W (2000) The neurobiology of taste and smell. Wiley, New YorkGoogle Scholar
  4. 4.
    Löbel D, Strotmann J, Jacob M, Breer H (2001) Chem Senses 26:673–680CrossRefPubMedGoogle Scholar
  5. 5.
    Buck L, Axel R (1991) Cell 65:175–187PubMedGoogle Scholar
  6. 6.
    Bockaert J, Pin JP (1999) EMBO J 18:1723–1729PubMedGoogle Scholar
  7. 7.
    Zhang X, Firestein S (2002) Nat Neurosci 5:124–133PubMedGoogle Scholar
  8. 8.
    Zozulya S, Echeverri F, Nguyen T (2001) Genome Biol 2:18.1–18.12CrossRefGoogle Scholar
  9. 9.
    Rouquier S, Taviaux S, Trask BJ, Brand-Arpon V, van den Engh G, Demaille J, Giorgi D (1998) Nat Genet 18:243–250PubMedGoogle Scholar
  10. 10.
    Rouquier S, Blancher A, Giorgi D (2000) Proc Natl Acad Sci USA 97:2870–2874PubMedGoogle Scholar
  11. 11.
    Gilad Y, Segre D, Skorecki K, Nachman MW, Lancet D, Sharon D (2000) Nat Genet 26:221–224CrossRefPubMedGoogle Scholar
  12. 12.
    Pilpel Y, Sosinsky A, Lancet D (1999) Essays Biochem 33:93–104Google Scholar
  13. 13.
    Wang J, Luthey-Schulten ZA, Suslick KS (2003) Prod Natl Acad Sci USA 100:3035–3039CrossRefGoogle Scholar
  14. 14.
    Troemel ER (1999) Bioessays 21:1011–1020CrossRefPubMedGoogle Scholar
  15. 15.
    Vosshall LB, Amrein H, Morozov PS et al (1999) Cell 96:725–736PubMedGoogle Scholar
  16. 16.
    Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) Science 298:1756–178CrossRefPubMedGoogle Scholar
  17. 17.
    Krieger J, Raming K, Dewer YME, Bette S, Conzelmann S, Breer H (2002) Eur J Neurosci 16:619–628CrossRefPubMedGoogle Scholar
  18. 18.
    Krieger J, Klink O, Mohl, C, Raming K, Breer H (2003) J Comp Physiol A (in press) DOI 10.1007/s00359-003-0427-xGoogle Scholar
  19. 19.
    Freitag J, Beck A, Ludwig G, v Bucholtz L, Breer H (1999) Gene 226:165–174CrossRefPubMedGoogle Scholar
  20. 20.
    Dryer L, Berghard A (1999) Trends Pharm Sci 20:413–417CrossRefPubMedGoogle Scholar
  21. 21.
    Freitag J, Ludwig G, Andreini I, Rössler P, Breer H (1998) J Comp Physiol A 183:635–650CrossRefPubMedGoogle Scholar
  22. 22.
    Freitag J, Krieger J, Strotmann J, Breer H (1995) Neuron 15:1383–1392PubMedGoogle Scholar
  23. 23.
    Mezler M, Fleischer J, Breer H (2001) J Exp Biol 204:2987–2997PubMedGoogle Scholar
  24. 24.
    Chess A, Simon I, Cedar H, Axel R (1994) Cell 78:823–834PubMedGoogle Scholar
  25. 25.
    Ishi T, Serizawa T, Kohda A, Nakatani H, Shiroishi T, Okumura K, Iwakura Y, Nagawa F, Tsuboi A, Sakano H (2001) Genes Cells 6:71–78CrossRefPubMedGoogle Scholar
  26. 26.
    Tsuboi A, Yoshihara S, Yamazaki N, Kasai H, Asai-Tsuboi H, Komatsu M, Serizawa S, Ishii T, Matsuda Y, Nagawa F et al (1999) J Neurosci 19:8409–8418PubMedGoogle Scholar
  27. 27.
    Hoppe R, Weimer M, Beck A, Breer H, Strotmann J (2000) Genomics 66:284–295CrossRefPubMedGoogle Scholar
  28. 28.
    Sosinsky A, Glusman G, Lancet D (2000) Genomics 70:49–61CrossRefPubMedGoogle Scholar
  29. 29.
    Vassali A, Rothmann A, Feinstein P, Zapotocky M, Mombaerts P (2002) Neuron 35:681–696PubMedGoogle Scholar
  30. 30.
    Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S (1998) Science 279:237–242PubMedGoogle Scholar
  31. 31.
    Krautwurst D, Yau KW, Reed R (1998) Cell 95:917–926PubMedGoogle Scholar
  32. 32.
    Wetzel CH, Oles M, Wellerdieck C, Kuczkowiak M, Gisselman G, Hatt H (1999) J Neurosci 19:7426–7433PubMedGoogle Scholar
  33. 33.
    Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K (2001) J Neurosci 21:6018–6025PubMedGoogle Scholar
  34. 34.
    Araneda RC, Kini AD, Firestein S (2000) Nat Neurosci 3:1248–1255CrossRefPubMedGoogle Scholar
  35. 35.
    Malnic B, Hirono J, Sato T, Buck LB (1999) Cell 96:713–723PubMedGoogle Scholar
  36. 36.
    Touhara K, Sengoku S, Inaki K, Tsuboi A, Hirono J, Sato T, Sakano H, Haga T (1999) Proc Natl Acad Sci USA 96:4040–4045CrossRefPubMedGoogle Scholar
  37. 37.
    Ressler KJ, Sullivan SL, Buck LB (1993) Cell 73:597–609PubMedGoogle Scholar
  38. 38.
    Strotmann J, Wanner I, Helfrich T, Breer H (1995) Eur J Neurosci 7:492–500PubMedGoogle Scholar
  39. 39.
    Strotmann J, Wanner I, Helfrich T, Beck A, Breer H (1994) Cell Tissue Res 278:11–20CrossRefPubMedGoogle Scholar
  40. 40.
    Strotmann J, Conzelmann S, Beck A, Feinstein P, Breer H, Mombaerts P (2000) J Neurosci 20:6927–6938PubMedGoogle Scholar
  41. 41.
    Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Cell 87:675–686PubMedGoogle Scholar
  42. 42.
    Katz LC, Shatz CJ (1996) Science 274:1133–1138CrossRefPubMedGoogle Scholar
  43. 43.
    Conzelmann S, Malun D, Breer H, Strotmann J (2001) Eur J Neurosci 14:1623–1632CrossRefPubMedGoogle Scholar
  44. 44.
    Maher BA (2002) Scientist 16:38–41Google Scholar
  45. 45.
    Wu TZ (1999) Biosens Bioelectron 14:9–18CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute of PhysiologyUniversity of HohenheimStuttgartGermany

Personalised recommendations