Analytical and Bioanalytical Chemistry

, Volume 376, Issue 7, pp 994–1005 | Cite as

Acetylation of the HIV-1 Tat protein: an in vitro study

  • Wilma Dormeyer
  • Alexander Dorr
  • Melanie Ott
  • Martina Schnölzer
Special Issue Paper


In the last few years, the understanding of lysine acetylation as a regulatory post-translational modification of proteins in cell signalling cascades has increased. It is now known that not only histones but also non-histone factors can serve as substrates of different acetyltransferase enzymes. Acetylated lysine residues in non-histone factors are often identified using radioactive labelling experiments and immunochemical analysis of synthetic peptides. In this study of the human immunodeficiency virus 1 (HIV-1) Tat protein, we demonstrate the benefits of matrix-assisted laser desorption/ionisation mass spectrometry, proteolytic digestion and Edman sequencing for the mapping of acetylation sites. We confirmed that the HIV-1 Tat protein is acetylated in vitro by the acetyltransferase p300 at a specific lysine residue at position 50 in its RNA binding region. Furthermore, we showed that the Tat cysteine-rich region is acetylated at multiple cysteine residues in the absence of enzyme. Since this non-enzymatic cysteine acetylation occurs independently from the surrounding peptide sequence, we consider the presence of cysteine residues in acetylated peptides an important factor for the interpretation of in vitro acetylation assays in general.


Acetylation MALDI-TOF mass spectrometry Edman sequencing HIV-1 Tat Histone acetyltransferase p300 



Amino acid


Acetyl coenzyme A




Arginine-rich motif


Cysteine-rich region


Histone acetyltransferase


  1. 1.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA et al (1995) Electrophoresis 16:1090PubMedGoogle Scholar
  2. 2.
    Wilkins MR, Gasteiger E, Gooley A, Herbert BR et al (1999) J Mol Biol 289:645CrossRefPubMedGoogle Scholar
  3. 3.
    Rappsilber J, Mann M (2002) Trends Biochem Sci 27:74CrossRefPubMedGoogle Scholar
  4. 4.
    Sterner DE, Berger SL (2000) Microbiol Mol Biol Rev 64:435PubMedGoogle Scholar
  5. 5.
    Chen H, Tini M, Evans RM (2001) Curr Opin Cell Biol 13:218CrossRefPubMedGoogle Scholar
  6. 6.
    Kouzarides T (2000) EMBO J 19:1176PubMedGoogle Scholar
  7. 7.
    Allfrey VG, Di Paola EA, Sterner R (1984) Methods Enzymol 107:224PubMedGoogle Scholar
  8. 8.
    Polevoda B, Sherman F (2002) Genome Biol 3:reviews0006CrossRefPubMedGoogle Scholar
  9. 9.
    Marmorstein R (2001) J Mol Biol 311:433CrossRefPubMedGoogle Scholar
  10. 10.
    Lapko VN, Smith DL, Smith JB (2001) Protein Sci 10:1130CrossRefPubMedGoogle Scholar
  11. 11.
    Ugrinova I, Pasceva EA, Armengaud J, Pashev IG (2001) Biochemistry 40:14655CrossRefPubMedGoogle Scholar
  12. 12.
    Lee SW, Berger SJ, Martinovic S, Pasa-Tolic L et al (2002) Proc Natl Acad Sci USA 99:5942CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang K, Williams KE, Huang L, Yau P et al (2002) Mol Cell Proteomics 1:500CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang K, Tang H, (2003) J Chromatogr B Analyt Technol Biomed Life Sci 783:173CrossRefPubMedGoogle Scholar
  15. 15.
    Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Science 298:2390CrossRefPubMedGoogle Scholar
  16. 16.
    Annan RS, Carr SA (1996) Anal Chem 68:3413CrossRefPubMedGoogle Scholar
  17. 17.
    Kim JY, Kim KW, Kwon HJ, Lee DW et al (2002) Anal Chem 74:5443CrossRefPubMedGoogle Scholar
  18. 18.
    Cullen BR (1998) Cell 93:685PubMedGoogle Scholar
  19. 19.
    Karn J (1999) J Mol Biol 293:235CrossRefPubMedGoogle Scholar
  20. 20.
    Seigel LJ, Ratner L, Josephs SF, Derse D et al (1986) Virology 148:226PubMedGoogle Scholar
  21. 21.
    Garcia JA, Harrich D, Pearson L, Mitsuyasu R, Gaynor RB (1988) EMBO J 7:3143PubMedGoogle Scholar
  22. 22.
    Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Nucleic Acids Res 17:3551PubMedGoogle Scholar
  23. 23.
    Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) Cell 92:451PubMedGoogle Scholar
  24. 24.
    Zhou Q, Chen D, Pierstorff E, Luo K (1998) EMBO J 17:3681CrossRefPubMedGoogle Scholar
  25. 25.
    Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM (1990) Science 249:1281PubMedGoogle Scholar
  26. 26.
    Hottiger MO, Nabel GJ (1998)J Virol 72:8252PubMedGoogle Scholar
  27. 27.
    Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) Proc Natl Acad Sci USA 95:13519CrossRefPubMedGoogle Scholar
  28. 28.
    Benkirane M, Chun RF, Xiao H, Ogryzko VV et al (1998) J Biol Chem 273:24898CrossRefPubMedGoogle Scholar
  29. 29.
    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) Cell 87:953PubMedGoogle Scholar
  30. 30.
    Ott M, Schnölzer M, Garnica J, Fischle W et al (1999) Curr Biol 9:1489CrossRefPubMedGoogle Scholar
  31. 31.
    Kiernan R E, Vanhulle C, Schiltz L, Adam E et al (1999) EMBO J 18:6106PubMedGoogle Scholar
  32. 32.
    Dorr A, Kiermer V, Pedal A, Rackwitz HR et al (2002) EMBO J 21:2715CrossRefPubMedGoogle Scholar
  33. 33.
    Mujtaba S, He Y, Zeng L, Farooq A et al (2002) Mol Cell 9:575PubMedGoogle Scholar
  34. 34.
    Fields GB, Noble RL (1990) Int J Pept Protein Res 35:161PubMedGoogle Scholar
  35. 35.
    Grant GA, Crankshaw MW, Gorka J (1997) Methods Enzymol 289:395PubMedGoogle Scholar
  36. 36.
    Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) J Biol Chem 256:7990PubMedGoogle Scholar
  37. 37.
    Col E, Caron C, Seigneurin-Berny D, Gracia J et al (2001) J Biol Chem 276:28179CrossRefPubMedGoogle Scholar
  38. 38.
    Bres V, Tagami H, Peloponese JM, Loret E et al (2002) EMBO J 21:6811CrossRefPubMedGoogle Scholar
  39. 39.
    Kuster B, Mann M (1998) Curr Opin Struct Biol 8:393CrossRefPubMedGoogle Scholar
  40. 40.
    Deng L, Wang D, de la Fuente C, Wang L et al (2001) Virology 289:312CrossRefPubMedGoogle Scholar
  41. 41.
    Schultz AM, Henderson LE, Oroszlan S (1988) Annu Rev Cell Biol 4:611CrossRefPubMedGoogle Scholar
  42. 42.
    Quesnel S, Silvius JR (1994) Biochemistry 33:13340PubMedGoogle Scholar
  43. 43.
    Kratzer R, Eckerskorn C, Karas M, Lottspeich F (1998) Electrophoresis 19:1910PubMedGoogle Scholar
  44. 44.
    Brune DC (1992) Anal Biochem 207:285PubMedGoogle Scholar
  45. 45.
    Andres HH, Klem AJ, Schopfer LM, Harrison JK et al (1988) J Biol Chem 263:7521PubMedGoogle Scholar
  46. 46.
    Upton A, Johnson N, Sandy J, Sim E (2001) Trends Pharmacol Sci 22:140CrossRefPubMedGoogle Scholar
  47. 47.
    Modis Y, Wierenga RK (1999) Structure Fold Des 7:1279CrossRefPubMedGoogle Scholar
  48. 48.
    Yan Y, Harper S, Speicher DW, Marmorstein R (2002) Nat Struct Biol 9:862CrossRefPubMedGoogle Scholar
  49. 49.
    Furia B, Deng L, Wu K, Baylor S et al (2002) J Biol Chem 277:4973CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Wilma Dormeyer
    • 1
  • Alexander Dorr
    • 2
  • Melanie Ott
    • 2
  • Martina Schnölzer
    • 1
  1. 1.Protein Analysis FacilityDeutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany
  2. 2.Applied Tumour VirologyDeutsches Krebsforschungszentrum (DKFZ) HeidelbergGermany

Personalised recommendations