Analytical and Bioanalytical Chemistry

, Volume 377, Issue 1, pp 132–139

Determination of sulfur and selected trace elements in metallothionein-like proteins using capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry with an octopole reaction cell

Original Paper

Abstract

The determination of sulfur in biologically relevant samples such as metalloproteins is described. The analytical methodology used is based on robust on-line coupling between capillary electrophoresis (CE) and octopole reaction cell inductively-coupled plasma mass spectrometry (ORC–ICP–MS). Polyatomic ions that form in the plasma and interfere with the determination of S at mass 32 are minimised by addition of xenon to the collision cell. The method has been applied to the separation and simultaneous element-specific detection of sulfur, cadmium, copper, and zinc in commercially available metallothionein preparations (MT) and metallothionein-like proteins (MLP) extracted from liver samples of bream (Abramis brama L.) caught in the river Elbe, Germany. Instrumental detection limits have been calculated according to the German standard procedure DIN 32645 for the determination of sulfur and some simultaneously measured trace elements in aqueous solution. For sulfur detection limits down to 1.3 μg L−1 (34S) and 3.2 μg L−1 (32S) were derived. For the other trace elements determined simultaneously detection limits ranging from 300 ng L−1 (58Ni) to 500 ng L−1 (66Zn, 55Mn) were achieved. For quantification of sulfur and cadmium in a commercially available MT preparation under hyphenated conditions the use of external calibration is suggested. Finally, the need for proper sample-preparation technique will be discussed.

Keywords

Inductively coupled plasma mass spectrometry Capillary electrophoresis Hyphenation Collision cell Metallothionein Speciation Biomolecules 

References

  1. 1.
    Kägi JHR (1991) Methods Enzymol 205:613PubMedGoogle Scholar
  2. 2.
    Stillman MJ (1995) Coord Chem Rev 144:461Google Scholar
  3. 3.
    Nordberg M (1998) Talanta 46:243Google Scholar
  4. 4.
    Vallee BL (1995) Neurochem Int 27:23PubMedGoogle Scholar
  5. 5.
    Dabrio M, Rodriguez AR, Bodin G, Bebianno MJ, De Ley M, Sestakova I, Vasak M, Nordberg M (2002) J Inorg Biochem 88:123CrossRefPubMedGoogle Scholar
  6. 6.
    Marco A, Compano R, Rubio R, Casals I, Krotz L, Ragaglia L, Giazzi G (2001) Analyst 126:1820CrossRefGoogle Scholar
  7. 7.
    Mertens M, Rittmeyer C, Kolbesen BO (2001) Spectrochim Acta B 56:2157CrossRefGoogle Scholar
  8. 8.
    Kola H, Peramaki P, Valimaki I (2002) J Anal At Spectrom 17:104CrossRefGoogle Scholar
  9. 9.
    Murillo M, Carrion N, Chirinos J (1993) J Anal At Spectrom 8:493Google Scholar
  10. 10.
    Prohaska T, Latkoczy C, Stingeder G (1999) J Anal At Spectrom 14:1501CrossRefGoogle Scholar
  11. 11.
    Wind M, Wensch H, Lehmann WD (2001) Anal Chem 73:3006Google Scholar
  12. 12.
    Evans EH, Wolf JC, Eckers C (2001) Anal Chem 73:4722CrossRefPubMedGoogle Scholar
  13. 13.
    Divjak B, Goessler W (1999) J Chromatogr A 844:161CrossRefGoogle Scholar
  14. 14.
    Koplik R, Pavelkova H, Cincibuchova J, Mestek O, Kvasnicka F, Suchanek M (2002) J Chromatogr B 770:261Google Scholar
  15. 15.
    Bandura DR, Baranov VI, Tanner SD (2002) Anal Chem 74:1497CrossRefPubMedGoogle Scholar
  16. 16.
    Lobinski R, Chassaigne H, Szpunar J (1998) Talanta 46:271Google Scholar
  17. 17.
    Prange A, Schaumlöffel D (2002) Anal Bioanal Chem 373:441CrossRefPubMedGoogle Scholar
  18. 18.
    Schaumlöffel D, Prange A, Marx G, Heumann KG, Brätter P (2002) Anal Bioanal Chem 372:155PubMedGoogle Scholar
  19. 19.
    Prange A, Schaumlöffel D, Brätter P, Richarz AN, Wolf C (2001) Fresenius J Anal Chem 371:764PubMedGoogle Scholar
  20. 20.
    Schaumlöffel D, Prange A (1999) Fresenius J Anal Chem 364:452Google Scholar
  21. 21.
    Prange A, Schaumlöffel D (1999) J Anal At Spectrom 14:1329Google Scholar
  22. 22.
    Nonose NS, Matsuda N, Fudagawa N, Kubota M (1994) Spectrochim Acta B 49:955CrossRefGoogle Scholar
  23. 23.
    DIN 32645 Nachweis-, Erfassungs- und Bestimmungsgrenzen – Ermittlung unter Wiederholbedingungen, DIN Deutsches Institut für Normung eV, BerlinGoogle Scholar
  24. 24.
    Leonhard P, Pepelnik R, Prange A, Yamada N, Yamada T (2002) J Anal At Spectrom 17:189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Daniel Pröfrock
    • 1
  • Peter Leonhard
    • 1
  • Andreas Prange
    • 1
  1. 1.GKSS Research Centre GeesthachtInstitute for Coastal ResearchGeesthachtGermany

Personalised recommendations