Advertisement

Analytical and Bioanalytical Chemistry

, Volume 377, Issue 1, pp 65–70 | Cite as

High-throughput microwave-digestion procedures to monitor neurotoxic elements in body fluids by means of inductively coupled plasma mass spectrometry

  • B. Bocca
  • A. Alimonti
  • G. Forte
  • F. Petrucci
  • C. Pirola
  • O. Senofonte
  • N. Violante
Special Issue Paper

Abstract

Microwave (MW) digestion procedures with high sample throughput (simultaneous digestion of 36 or 80 samples) and procedural simplicity (disposable plastic tubes, or re-usable liners with screw-cap) were investigated for their efficiency in routine analyses of biological samples. Different digestion vessel materials were tested for metal leaching/adsorption and thermal resistance: quartz, glass, polyethylene (PE) and polystyrene (PS). For the instrumental quantification of Al, Bi, Cd, Co, Cr, Hg, Mn, Mo, Ni, Pb, Sb, and Tl at ultra-trace levels in urine, serum, and whole blood, sector field inductively coupled plasma mass spectrometry (SF-ICP–MS) was used. The different pretreatment conditions and vessels were evaluated in terms of contamination risk, effective power of detection, accuracy, and precision. Results of analyses of serum, urine and whole blood certified reference materials (CRMs) were fully satisfactory for almost all the analytes. In the case of Hg, Mo, and Tl in serum digested in plastic containers the results were just below the lower limit of uncertainty of the certified range. On the basis of the present data the following MW procedures can be suggested:
  1. 1.

    for urine, digestion with nitric acid at atmospheric pressure in plastic vials;

     
  2. 2.

    for serum, digestion with nitric acid at atmospheric pressure in glass vessels; and

     
  3. 3.

    for whole blood, digestion under pressure in quartz tubes.

     
Because of the levels of the procedural blanks, Bi was not measurable at the concentrations expected in human fluids, and Al was accurately detectable in whole blood only.

Keywords

Neuro-toxic elements Sample pretreatment Microwave digestion ICP–MS Biological fluids Urine Serum Blood 

Notes

Acknowledgements

This work is a part of the Neurotox Project funded by the Italian Ministry of Health (Project no. 1AB/F, 2002–2004).

References

  1. 1.
    Pamphlett R, McQuilty R, Zarkos K (2001) Neurotoxicology 22:401–410CrossRefPubMedGoogle Scholar
  2. 2.
    Verity MA (1999) Neurotoxicology 20:489–498Google Scholar
  3. 3.
    Bressler J, Kim K, Chakraborti T, Goldstein G (1999) Neurochem Res 24:595–600CrossRefPubMedGoogle Scholar
  4. 4.
    Montgomery EB (1995) Toxicology 97:3–9CrossRefPubMedGoogle Scholar
  5. 5.
    Doll R (1993) Age Ageing 22:138–153PubMedGoogle Scholar
  6. 6.
    Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ (1999) Neurotoxicology 20:239–248PubMedGoogle Scholar
  7. 7.
    Mingorance MD, Perez-Vazquez ML, Lachica M (1993) J Anal At Spectrom 8:853–858Google Scholar
  8. 8.
    Vandecasteele C, Vanhoe H, Dams R (1993) J Anal At Spectrom 8:781–786Google Scholar
  9. 9.
    Krachler M, Alimonti A, Petrucci F, Forastiere F, Caroli S (1998) J Anal At Spectrom 13:701–705CrossRefGoogle Scholar
  10. 10.
    Riondato J, Vanhaecke F, Moens L, Dams R (1997) J Anal At Spectrom 12:933–937CrossRefGoogle Scholar
  11. 11.
    Alimonti A, Petrucci F, Santucci B, Cristaudo A, Caroli S (1995) Anal Chim Acta 306:35–41CrossRefGoogle Scholar
  12. 12.
    Vaughan MA, Baines AD, Templeton DM (1991) Clin Chem 37:210–215PubMedGoogle Scholar
  13. 13.
    Knapp G, Raptis SE, Kaiser G, Tolg G, Schramel P, Schreiber B (1981) Fresenius Z Anal Chem 308:97–103Google Scholar
  14. 14.
    Schramel P, Wendler I (1998) Fresenius J Anal Chem 361:487–491CrossRefGoogle Scholar
  15. 15.
    Begerow J, Turfeld M, Dunemann L (2000) J Anal At Spectrom 15:347–352Google Scholar
  16. 16.
    Rodushkin I, Ödman F, Branth S (1999) Fresenius J Anal Chem 364:338–346CrossRefGoogle Scholar
  17. 17.
    Rodushkin I, Ödman F, Olofsson R, Axelsson MD (2000) J Anal At Spectrom 15:937–944CrossRefGoogle Scholar
  18. 18.
    Teresa M, Vasconcelos SD, Tavares HMF (1997) Sci Total Environ 205:189–199CrossRefPubMedGoogle Scholar
  19. 19.
    Kunze J, Koelling S, Reich M, Wimmer MA (2000) Fresenius J Anal Chem 366:165–166CrossRefPubMedGoogle Scholar
  20. 20.
    Caroli S, Alimonti A, Coni E, Petrucci F, Senofonte O, Violante N (1994) CRC 24:363–398Google Scholar
  21. 21.
    Iyengar GV (1998) Radiat Phys Chem 51:545–560CrossRefGoogle Scholar
  22. 22.
    Rodushkin I, Element 2 Finnigan Mat Application Flash Report no. E11, 12/01 Part no.1990950Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • B. Bocca
    • 1
  • A. Alimonti
    • 1
  • G. Forte
    • 1
  • F. Petrucci
    • 1
  • C. Pirola
    • 2
  • O. Senofonte
    • 1
  • N. Violante
    • 1
  1. 1.Istituto Superiore di SanitàRomeItaly
  2. 2.Milestone SrlSorisoleItaly

Personalised recommendations