Analytical and Bioanalytical Chemistry

, Volume 376, Issue 7, pp 1041–1052 | Cite as

Determination of protonation constants of some fluorinated polyamines by means of 13C NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines

  • Chiara Frassineti
  • Lucia Alderighi
  • Peter Gans
  • Antonio Sabatini
  • Alberto Vacca
  • Stefano Ghelli
Special Issue Paper

Abstract.

The pKa values of 6-fluoro-4,8-diazadodecane-1,12-diamine (6-fluorospermine) (1), 6,6-difluoro-4,8-diazadodecane-1,12-diamine (6,6-difluorospermine) (2), 6-fluoro-4-azaoctane-1,8-diamine (6-fluorospermidine) (3) and 6,6-difluoro-4-azaoctane-1,8-diamine (6,6-difluorospermidine) (4) in D2O solution have been determined at 40 °C from 13C NMR chemical shifts data using the new computer program HypNMR2000. The enthalpies of protonation of compounds 1–4 and the parent amines spermine (5) and spermidine (6) have been determined from microcalorimetric titration data. The values of ΔH° were used to derive basicity constants relative to 25 °C. The NMR data have been analysed by two different methods to obtain information on the protonation sequence in the polyamines 1–5. The protonation sequence for spermine is related to its biological activity.

Keywords

13C NMR Fluorinated compounds Polyamines Protonation constants Protonation enthalpies Protonation sequence 

Abbreviations

PKC

Protein kinase C

PS

Phosphatidylserine

VB

Microsoft Visual Basic

References

  1. 1.
    Schuber F (1989) Biochem J 260:1-10.PubMedGoogle Scholar
  2. 2.
    Pegg AE (1988) Cancer Res 48:759-774.PubMedGoogle Scholar
  3. 3.
    Heby O, Persson L (1990) Trends Biochem Sci 15:153-158.PubMedGoogle Scholar
  4. 4.
    Schipper RG, Penning LC, Verhofstad AAJ (2000) Semin Cancer Biol 10:244-258.Google Scholar
  5. 5.
    Thomas T, Thomas TJ (2001) Cell Mol Life Sci 58:244-258.PubMedGoogle Scholar
  6. 6.
    Williams K (1997) Cell Signal 9:1-13.PubMedGoogle Scholar
  7. 7.
    Williams K (1997) Biochem J 325:289-297.PubMedGoogle Scholar
  8. 8.
    Moruzzi MS, Marverti G, Piccinini G, Frassineti C, Monti MG (1993) Mol Cell Biochem 124:1-9.PubMedGoogle Scholar
  9. 9.
    Moruzzi MS, Barbiroli B, Monti MG, Tadolini B, Hakim G, Mezzetti G (1987) Biochem J 247:175-180.PubMedGoogle Scholar
  10. 10.
    Otieno MA, Kensler TW (2000) Cancer Res 60:4391-4396.PubMedGoogle Scholar
  11. 11.
    Bertoluzza A, Fagnano C, Finelli P, Morelli MA, Simoni R, Tosi R (1983) J Raman Spectrosc 14:386-394.Google Scholar
  12. 12.
    Martell AE, Motekaitis RJ (1992) Determination and use of stability constants. VCH Publishers, Inc., New YorkGoogle Scholar
  13. 13.
    Rossotti FJC, Rossotti H (1961) The determination of stability constants and other equilibrium constants in solution. McGraw-Hill, New YorkGoogle Scholar
  14. 14.
    Rossotti H (1969) Chemical applications of potentiometry. Van Nostrand, LondonGoogle Scholar
  15. 15.
    Alves S, Pina F, Albelda MT, Garcia-España E, Soriano C, Luis SV (2001) Eur J Inorg Chem 2:405-412.CrossRefGoogle Scholar
  16. 16.
    Felemez M, Bernard P, Schlewer G, Spiess B (2000) J Am Chem Soc 122:3156-3165.CrossRefGoogle Scholar
  17. 17.
    Hägele G, Szakács Z, Ollig J, Hermens S, Pfaff C (2000) Heteroatom Chemistry 11:562-582.CrossRefGoogle Scholar
  18. 18.
    Barbaro P, Bianchini C, Capannesi G, Luca LD, Laschi F, Petroni D, Salvadori PA, Vacca A, Vizza F (2000) J Chem Soc Dalton Trans 2393-2401.Google Scholar
  19. 19.
    Formica M, Fusi V, Micheloni M, Pontellini R, Romani P (2000) Polyhedron 19:2501-2505.CrossRefGoogle Scholar
  20. 20.
    Jano I, Hardcastle JE (1999) Anal Chim Acta 390:267-274.CrossRefGoogle Scholar
  21. 21.
    Sroczynski D, Grzejdziak A, Nazarski RB (1999) J Incl Phen Macrocycl Chem 35:251-260.CrossRefGoogle Scholar
  22. 22.
    Achour B, Costa J, Delgado R, Garrigues E, Geraldes CFGC, Korber N, Nepveu F, Prata MI (1998) Inorg Chem 37:2729-2740.CrossRefPubMedGoogle Scholar
  23. 23.
    Hardcastle JE, Jano I (1998) J Chromatogr 717:39-56.CrossRefGoogle Scholar
  24. 24.
    Huskens J, Torres DA, Kovacs Z, André JP, Geraldes CFGC, Sherry AD (1997) Inorg Chem 36:1495-1503.PubMedGoogle Scholar
  25. 25.
    PerisicJanjic N, Arman L, Lazarevic M (1997) Spectrosc Lett 30:1037-1048.Google Scholar
  26. 26.
    Manning TJ, Tonui P, Miller A, Toporek S, Powell D (1996) Biochem Biophys Res Commun 226:796-800.CrossRefPubMedGoogle Scholar
  27. 27.
    Anichini A, Fabbrizzi L, Barbucci R, Mastroianni A (1977) J Chem Soc Dalton Trans 2225-2227.Google Scholar
  28. 28.
    Chapman D, Lloyd DR, Prince RH (1963) J Chem Soc 3645-3658.Google Scholar
  29. 29.
    Nakamoto K, Morimoto Y, Martell AE (1963) J Am Chem Soc 85:309-313.Google Scholar
  30. 30.
    Frassineti C, Ghelli S, Gans P, Sabatini A, Moruzzi MS, Vacca A (1995) Anal Biochem 231:374-382.CrossRefPubMedGoogle Scholar
  31. 31.
    Aikens DA, Bunce SC, Onasch OF, Schwartz HM, Hurwitz C (1983) J Chem Soc Chem Commun 43-45.Google Scholar
  32. 32.
    Takeda Y, Semejima K, Nagano K, Watanabe M, Sugeta H, Kyogoku Y (1983) Eur J Biochem 130:383-389.PubMedGoogle Scholar
  33. 33.
    Kimberly MM, Goldstein JH (1981) Anal Chem 53:789-793.Google Scholar
  34. 34.
    Delfini M, Segre AL, Conti F, Barbucci R, Barone V, Ferruti P (1980) J Chem Soc Perkin Trans 2 900-903.Google Scholar
  35. 35.
    Davies CW (1962) Ion Association. Butterworths, LondonGoogle Scholar
  36. 36.
    Smith RM, Martell AE (1997), U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg MD 20899 (U.S.A.).Google Scholar
  37. 37.
    Cini R, Giorgi G, Masi D, Sabatini A, Vacca A (1991) J Chem Soc Perkin Trans 2 765-771.Google Scholar
  38. 38.
    Vacca A (1996), University of Florence.Google Scholar
  39. 39.
    Baillon JG, Mamont PS, Wagner J, Gerhart F, Lux P (1988) Eur J Biochem 176:237-242.PubMedGoogle Scholar
  40. 40.
    Dagnall SP, Hague DN, McAdam ME, Moreton AD (1985) J Chem Soc Faraday Trans 81:1483-1494.Google Scholar
  41. 41.
    Palmer BN, Powell HKJ (1976) J Chem Soc Dalton Trans 2089-2092.Google Scholar
  42. 42.
    Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311-318.CrossRefGoogle Scholar
  43. 43.
    Barbucci R, Fabbrizzi L, Paoletti P, Vacca A (1973) J Chem Soc Dalton Trans 1763-1767.Google Scholar
  44. 44.
    Onasch OF, Aikens DA, Bunce SC, Schwartz H, Nairn D, Hurwitz C (1984) Biophys Chem 19:245-253.CrossRefGoogle Scholar
  45. 45.
    Aikens DA, Bunce SC, Onasch OF, Parker R, Hurwitz C, Clemans S (1983) Biophys Chem 17:67-74.CrossRefPubMedGoogle Scholar
  46. 46.
    Hague DN, Moreton AD (1994) J Chem Soc Perkin Trans 2 265-270.Google Scholar
  47. 47.
    Dagnall SP, Hague DN, McAdam ME (1984) J Chem Soc Perkin Trans 2 1111-1114.Google Scholar
  48. 48.
    Borkovec M, Koper GJM (2000) Anal Chem 72:3272-3279.CrossRefPubMedGoogle Scholar
  49. 49.
    Powell MJD (1964) Computer J 7:155-161.Google Scholar
  50. 50.
    Ohki S, Duax J (1986) Biochim Biophys Acta 861:177-186.CrossRefPubMedGoogle Scholar
  51. 51.
    Meers P, Hong K, Bentz J, Papahadjopoulos D (1986) Biochemistry 25:3109-3118.PubMedGoogle Scholar
  52. 52.
    Tadolini B, Cabrini L, Varani E, Sechi AM (1985) Biog Amines 3:87-96.Google Scholar
  53. 53.
    Chung L, Kaloyanides G, McDaniel R, McLaughlin A, McLaughlin S (1985) Biochemistry 24:442-452.PubMedGoogle Scholar
  54. 54.
    Gold M, Powell HKJ (1976) J Chem Soc Dalton Trans 230-233.Google Scholar
  55. 55.
    Dagnall SP, Hague DN, McAdam ME (1984) J Chem Soc Perkin Trans 2 435-440.Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Chiara Frassineti
    • 1
  • Lucia Alderighi
    • 3
  • Peter Gans
    • 2
  • Antonio Sabatini
    • 3
  • Alberto Vacca
    • 3
  • Stefano Ghelli
    • 4
  1. 1.Dipartimento di Scienze BiomedicheUniversità degli Studi di ModenaModenaItaly
  2. 2.Department of ChemistryThe University of LeedsLeedsEngland
  3. 3.Dipartimento di ChimicaUniversità degli Studi di Firenze Sesto FiorentinoItaly
  4. 4.SPIN Rubiera (Reggio Emilia)Italy

Personalised recommendations