Analytical and Bioanalytical Chemistry

, Volume 376, Issue 8, pp 1160–1167 | Cite as

Quantification of DNA in forensic samples



Quantification of DNA in a forensic sample is of major importance for proper DNA amplification and STR profiling. Several methods have been developed to quantify DNA, from basic UV spectrometry, through gel-based techniques, to dye staining, blotting techniques, and, very recently, DNA amplification methods (polymerase chain reaction, PCR). Early techniques simply measured total DNA, but newer techniques can specifically measure human DNA while excluding non-human DNA (foodstuff, animal, or bacterial contamination). These newer assays can be faster and less expensive than traditional methods, making them ideal for the busy forensic laboratory. This paper reviews classic and newer quantification techniques and presents methods recently developed by the authors on the basis of PCR of Alu sequences.


Forensic science DNA quantification  Alu sequences Polymerase chain reaction Real-time Human 


  1. 1.
    DNA Advisory Board (2000) Forensic Sci Commun, vol 2, Scholar
  2. 2.
    Monroe HN, Fleck A (1966) Methods Biochem Anal 14:113–176PubMedGoogle Scholar
  3. 3.
    Volkin E, Cohn WE (1954) Methods Biochem Anal 1:287–305Google Scholar
  4. 4.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York, pp E.5–E.7Google Scholar
  5. 5.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1998) Current protocols in molecular biology. Wiley, New York, pp A.3D1–A.3D.8Google Scholar
  6. 6.
    Le Pecq J, Paoletti C (1966) Anal Biochem 17:100–107PubMedGoogle Scholar
  7. 7.
    Waring M (1965) J Mol Biol 13:269–282PubMedGoogle Scholar
  8. 8.
    Kubista M, Akerman B, Norden B (1987) Biochemistry 26:4545–4553PubMedGoogle Scholar
  9. 9.
    Portugal J, Waring M (1988) Biochem Biophys Acta 949:158–168PubMedGoogle Scholar
  10. 10.
    Daxhelet G, Coene M, Hoet P, Cocito C (1989) Anal Biochem 179:401–403PubMedGoogle Scholar
  11. 11.
    Kapuscinski J (1990) J Histochem Cytochem 38:1323–1329Google Scholar
  12. 12.
    Labarca C, Paigen K (1980) Anal Biochem 102:344–352PubMedGoogle Scholar
  13. 13.
    Tanious A, Veal JM, Buczak H, Ratmeyer LS, Wilson WD (1992) Biochemistry 31:3103–3112PubMedGoogle Scholar
  14. 14.
    Singer VL, Jones LJ, Yue ST, Haugland RP (1997) Anal Biochem 249:228–238PubMedGoogle Scholar
  15. 15.
    Haugland RP (2002) Handbook of fluorescent probes and research products, 9th edn. Molecular Probes, Eugene, OR, chap 8.3, pp 300–308Google Scholar
  16. 16.
    Rye HS, Dabora JM, Quesada MA, Mathies RA (1993) Anal Biochem 208:144–150PubMedGoogle Scholar
  17. 17.
    Ahn SJ, Costa J, Emanuel JR (1996) Nucleic Acids Res 24:2623–2625PubMedGoogle Scholar
  18. 18.
    Romppanen EL, Savolainen K, Mononen I (2000) Anal Biochem 279:111–114PubMedGoogle Scholar
  19. 19.
    Chadwick RB, Conrad MP, McGinnis MD, Johnston-Dow L, Spurgeon SL, Kronick MN (1996) Biotechniques 20:676–683PubMedGoogle Scholar
  20. 20.
    Buel E, Schwartz M (1993) Appl Theor Electroph 3:253–255Google Scholar
  21. 21.
    Buel E, Schwartz M (1995) J Forensic Sci 40:275–278PubMedGoogle Scholar
  22. 22.
    Jin X, Yue S, Wells KS, Singer VL (1994) FASEB J 8:A1266Google Scholar
  23. 23.
    Jin X, Yue S, Wells KS, Singer VL (1994) Biophys J 66:A159Google Scholar
  24. 24.
    Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, Amiott EA, Sprecher CJ (2002) J Forensic Sci 47:773–785PubMedGoogle Scholar
  25. 25.
    Moretti TR, Baumstark AL, Defenbaugh DA, Keys KM, Smerick JB, Budowle B (2001) J Forensic Sci 46:647–660PubMedGoogle Scholar
  26. 26.
    LaFountain MJ, Schwartz MB, Svete PA, Walkinshaw MA, Buel E (2001) J Forensic Sci 46:1191–1198PubMedGoogle Scholar
  27. 27.
    Walsh PS, Varlaro J, Reynolds R (1992) Nucleic Acids Res 20:5061–5065PubMedGoogle Scholar
  28. 28.
    Waye JS, Willard HF (1986) Nucleic Acids Res 14:6915–6927PubMedGoogle Scholar
  29. 29.
    Duewer DL, Kline MC, Redman JW, Newall PJ, Reeder DJ (2001) J Forensic Sci 46:1199–1210PubMedGoogle Scholar
  30. 30.
    Budowle B, Hudlow WR, Lee SB, Klevan L (2001) Biotechniques 30:680–685PubMedGoogle Scholar
  31. 31.
    Himmelspach M, Gruber F, Antoine G, Falkner FG, Dorner F, Hammerle T (1996) Anal Biochem 242:240–247PubMedGoogle Scholar
  32. 32.
    Mighell AJ, Markham AF, Robinson PA (1997) FEBS Lett 417:1–5PubMedGoogle Scholar
  33. 33.
    Schmid CW (1996) Prog Nucleic Acid Res Mol Biol 53:283–319PubMedGoogle Scholar
  34. 34.
    Ullu E, Tschudi C (1984) Nature 312:171–172PubMedGoogle Scholar
  35. 35.
    Chen PJ, Cywinski A, Taylor JM (1985) J Virol 54:278–284PubMedGoogle Scholar
  36. 36.
    Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E (1996) J Mol Evol 42:3–6PubMedGoogle Scholar
  37. 37.
    Mandrekar MN, Erickson AM, Kopp K, Krenke BE, Mandrekar PV, Nelson R, Peterson K, Shultz J, Tereba A, Westphal N (2001) Croat Med J 42:336–339PubMedGoogle Scholar
  38. 38.
    Sifis ME, Both K, Burgoyne LA (2002) J Forensic Sci 47:589–592PubMedGoogle Scholar
  39. 39.
    Andréasson H, Gyllensten U, Allen M (2002) Biotechniques 33:402–411PubMedGoogle Scholar
  40. 40.
    Nicklas JA, Buel E (2003) J Forensic Sci 48:282–291PubMedGoogle Scholar
  41. 41.
    Nicklas JA, Buel E (2003) J Forensic Sci, in pressGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Vermont Forensic LaboratoryDepartment of Public SafetyWaterburyUSA

Personalised recommendations