Advertisement

Analytical and Bioanalytical Chemistry

, Volume 376, Issue 7, pp 1006–1013 | Cite as

Epitope-targeted proteome analysis: towards a large-scale automated protein–protein-interaction mapping utilizing synthetic peptide arrays

  • Krzysztof Bialek
  • Andrzej Swistowski
  • Ronald FrankEmail author
Special Issue Paper

Abstract

We describe the development of a process for the genome-wide mapping of interactions between protein domains and peptide ligands entirely based on high-throughput biochip technologies. A phage library displaying protein domains from a randomly fragmented and cloned cDNA library will be "panned" on an array of synthetic peptide ligands. After multiplexed affinity enrichment, peptide-specific phage populations will be automatically eluted, propagated, labelled and identified by hybridisation to a DNA microarray. Peptide arrays are synthesized in situ by SPOT synthesis on a planar substrate. By utilizing a commercially available library of human brain cDNA plus a set of distinct model domains cloned into T7-phage, we could show that a single panning round on an array of known peptide ligands for these model domains synthesized on a cellulose membrane can yield an enrichment of better than a factor of 1,000. This is sufficient to detect peptide-specific enrichment of Cy3(post-panning) against Cy5(pre-panning)-labelled phage DNA inserts on a cDNA microarray. Thus, the proof-of-principle of our approach could be successfully demonstrated and first interaction data are being collected.

Keywords

Peptide arrays DNA microarrays Protein domains Epitope Phage display Automation Proteomics Functional genomics 

Notes

Acknowledgements

We are thankful to Lesley Mühle for endless PCR and gel analyses and to Susanne Daenicke for expert help in peptide array synthesis. We want to thank G. Cesarini for donation of λDisplay1 vector and A. Zucconi for helpful advice with the λ display system. This work was supported by BMBF grant 031U102G in the frame of the National Genome Research Net (NGFN). The authors are solely responsible for the content of this publication.

References

  1. 1.
    Geysen HM, Rodda SJ, Mason TJ (1986) Mol Immunol 23:709–715CrossRefPubMedGoogle Scholar
  2. 2.
    Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MDR et al (2001) Nucleic Acids Res 29:37–40; http://www.ebi.ac.uk/interpro/. Cited 7 Nov 2002Google Scholar
  3. 3.
    Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz et al (2002) Nature 415:141–147PubMedGoogle Scholar
  4. 4.
    Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P et al (2002) Nature 415:180–183PubMedGoogle Scholar
  5. 5.
    Fields S, Song OA (1989) Nature 340:245–246PubMedGoogle Scholar
  6. 6.
    Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight J R, et al (2000) Nature 403:623–627PubMedGoogle Scholar
  7. 7.
    Tong AHY, Drees B, Nardelli G, Bader GD, Brannetti B, et al (2002) Science 295:321–324PubMedGoogle Scholar
  8. 8.
    Frank R (2002) Comb Chem High Throughput Screening 5:429–440Google Scholar
  9. 9.
    Frank R (1992) Tetrahedron 48:9217–9232Google Scholar
  10. 10.
    Sambrook J, Fritsch EF, Maniatis T (1989) In: Molecular Cloning. CSH Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  11. 11.
    Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl U D, Walter U, Gertler FB, Wehland J, Chakraborty T (1997) EMBO J 16:5433–5444PubMedGoogle Scholar
  12. 12.
    Chen HI, Sudol M (1995) Proc Nat Acad Sci 92:7819–7823PubMedGoogle Scholar
  13. 13.
    Ermekova KS, Zambrano N, Linn H, Minopoli G, Sudol M (1997) J Biol Chem 272:32869–32877CrossRefPubMedGoogle Scholar
  14. 14.
    Frank R, Overwin H (1996) In: Morris GE (ed) Methods in molecular biology, vol 66: epitope mapping protocols. Humana Press, Totowa, pp 149–169Google Scholar
  15. 15.
    Hawlisch H, Müller M, Frank R, Bautsch W, Klos A Köhl J (2001) Anal Biochem 293:142–145; Hultschig C, Baensch M, Köhl J, Frank R (2001) In: Epton R (ed) Solid phase synthesis & combinatorial libraries 2000. Mayflower Worldwide, Birmingham, UK, pp 7–10Google Scholar
  16. 16.
    Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen B, Storz G, Botstein D, Brown PO (2000) Mol Biol Cell 11:4241–4257PubMedGoogle Scholar
  17. 17.
    Feng S, Chen JK, Yu H, Simon JA, Schreiber SL (1994) Science 266:1241–1247PubMedGoogle Scholar
  18. 18.
    Callebaut I, Cossart P, Dehoux P (1998) FEBS Lett 441:181–185PubMedGoogle Scholar
  19. 19.
    Duilio A, Zambrano N, Mogavero AR, Ammendola R, Cimino F, Russo T (1991) Nucleic Acids Res 19:5269–5274PubMedGoogle Scholar
  20. 20.
    Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M, Huebner K, Lehman D (1995) J Biol Chem 270:14733–14741CrossRefPubMedGoogle Scholar
  21. 21.
    Rosenberg A, Griffin K, Studier FW, McCormick M, Berg J, Novy R, Mierendorf R (1996) InNovations 6:1–6Google Scholar
  22. 22.
    Castagnoli L, Zucconi A, Quondam M, Rossi M, Vaccaro P, Panni S, Paoluzi S, Santonico E, Dente L, Cesareni G (2001) Com Chem High Throughput Screen 4:121–133Google Scholar
  23. 23.
    Zucconi A, Dente L, Santonico E, Castagnoli L, Cesareni G (2001) J Mol Biol 307:1329–1339CrossRefPubMedGoogle Scholar
  24. 24.
    Bishop JO, Morton JG, Rosbash M, Richardson M (1974) Nature 250:199–204PubMedGoogle Scholar
  25. 25.
    Frank R (2001) German Patent Application P 101 17 135.8Google Scholar
  26. 26.
    Sparks AB, Hoffman NG, McConnell SJ, Fowlkes DM, Kay B K (1996) Nat Biotechnol 14:741–744PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Krzysztof Bialek
    • 1
  • Andrzej Swistowski
    • 1
  • Ronald Frank
    • 1
    Email author
  1. 1.Research Group for Molecular RecognitionGBF (German Research Centre for Biotechnology)BraunschweigGermany

Personalised recommendations