Advertisement

Analytical and Bioanalytical Chemistry

, Volume 375, Issue 8, pp 985–993 | Cite as

PCR technology for screening and quantification of genetically modified organisms (GMOs)

  • Arne Holst-Jensen
  • Sissel B. Rønning
  • Astrid Løvseth
  • Knut G. Berdal
Special Issue Paper

Abstract

Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications.

The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content.

Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.

Keywords

Event-specific Validation Detection and quantification limit Real-time PCR Multiplex PCR Reference materials 

Notes

Acknowledgements

This study was financially supported by the European Commissions Framework 5, Quality of Life program, within the project "Reliable, Standardised, Specific, Quantitative Detection of Genetically Modified Food" (QLK1–1999–01301), and a grant from the Research Council of Norway (NFR 136430/130).

References

  1. 1.
    Kleppe K, Ohtsuka E, Kleppe R, Molineux I, Khorana HG (1971) J Mol Biol 56:341–361PubMedGoogle Scholar
  2. 2.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Science 239:487–491PubMedGoogle Scholar
  3. 3.
    Institute of Reference Materials and Measurements (IRMM), European Commission, Joint Research Centre, Geel, Belgium (2002) http://www.irmm.jrc.be/. Cited 12 Sept 2002Google Scholar
  4. 4.
    Agriculture and Biotechnology Strategies Canada inc (2002) GMO database. http://www.agbios.com. Cited 12 Sept 2002Google Scholar
  5. 5.
    Wolf C, Scherzinger M, Wurz A, Pauli U, Hübner P, Lüthy J (2000) Eur Food Res Technol 210:367–372Google Scholar
  6. 6.
    Hemmer W (1997) BATS-report 2/97. BATS, Basel, SwitzerlandGoogle Scholar
  7. 7.
    Commission Regulation 49/2000 EC (2000) Off J Europ Com-11.1.2000-No L 6, P. 0013–0014Google Scholar
  8. 8.
    Berdal KG, Holst-Jensen A (2001) Eur Food Res Technol 213:432–438Google Scholar
  9. 9.
    European Committee for Normalisation (CEN), Technical Committee 275, Working group 11, internal working documentsGoogle Scholar
  10. 10.
    Studer E, Rhyner C, Lüthy J, Hübner P (1998) Z Lebensm Unters Forsch 207:207–213CrossRefGoogle Scholar
  11. 11.
    Hardegger M, Brodmann P, Herrmann A (1999) Eur Food Res Technol 209:83–87CrossRefGoogle Scholar
  12. 12.
    Van den Eede G, Lipp M, Eyquem F, Anklam E (2000) European Commission, Joint Research Centre, IHCP. EUR 19676 ENGoogle Scholar
  13. 13.
    Rudi K, Holck A, Matforsk, Norway, personal communicationGoogle Scholar
  14. 14.
    García-Cañas V, Gonzáles R, Cifuentes A (2002) J Agric Food Chem 50:1016–1021CrossRefPubMedGoogle Scholar
  15. 15.
    Burns M, Shanahan D, Valdivia H, Harris N (2003) Eur Food Res Technol (in press)Google Scholar
  16. 16.
    Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Plant Mol Biol 17:1105–1109PubMedGoogle Scholar
  17. 17.
    Zimmermann A, Liniger M, Lüthy J, Pauli U (1998) Lebensm-Wiss u Technol 31:664–667Google Scholar
  18. 18.
    Ehlers B, Strauch E, Goltz M, Kubsch D, Wagner H, Maidhof H, Bendiek J, Appel B, Buhk H-J (1997) Bundesgesundhbl 4:118–121Google Scholar
  19. 19.
    Vaïtilingom M, Pijnenburg H, Gendre F, Brignon P (1999) J Agric Food Chem 47:5261–5266PubMedGoogle Scholar
  20. 20.
    Hernandez M, Rio A, Esteve T, Prat S, Pla M. (2001) J Agric Food Chem 49:3622–3627CrossRefPubMedGoogle Scholar
  21. 21.
    Meyer R, Chardonnens F, Hübner P, Lüthy J (1996) Z Lebensm Unters Forsch 203:339–344PubMedGoogle Scholar
  22. 22.
    Busch U, Mühlbauer B, Schulze M, Zagon J (1999) Deutsche Lebensmittelrundschau Heft 2:52–56Google Scholar
  23. 23.
    Pietsch K, Waiblinger H-U, Brodmann P, Wurz A (1997) Deutsche Lebensm Rundsch 93:35–38Google Scholar
  24. 24.
    Matsuoka T, Kuribara H, Takubo K, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2002) J Agric Food Chem 50:2100–2109CrossRefPubMedGoogle Scholar
  25. 25.
    Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2001) J Food Hyg Soc Japan 42:24–32Google Scholar
  26. 26.
    Hupfer C, Hotzel H, Sachse K, Engel K-H (1998) Z Lebensm Unters Forsch 206:203–207CrossRefGoogle Scholar
  27. 27.
    Wurz A, Willmund (1997) Foods produced by means of genetic engineering. In: Schrieber, GA, Bögl KW (eds) 2nd status report. BgVV-Heft 1/1997, pp 115–117Google Scholar
  28. 28.
    Zimmermann A, Lüthy J, Pauli U (2000) Lebensm-Wiss u Technol 33:210–216Google Scholar
  29. 29.
    Rønning SB, Vaïtilingom M, Berdal KG, Holst-Jensen A (2003) Eur Food Res Technol (in press)Google Scholar
  30. 30.
    Holck A, Vaïtilingom M, Didierjean L, Rudi K (2002) Eur Food Res Technol 214:449–454Google Scholar
  31. 31.
    Hernandez M, Pla M, Esteve T, Prat S, Puigdomenech P, Ferrando A (2002) Transgenic Res (in press)Google Scholar
  32. 32.
    Windels P, Bertrand S, Depicker A, Moens W, Van Bockstaele E, De Loose M (2003) Eur Food Res Technol (in press)Google Scholar
  33. 33.
    Taverniers I, Wiendels P, Van Bockstaele E, De Loose M (2001) Eur Food Res Technol 213:417–424Google Scholar
  34. 34.
    Terry C, Harris N (2001) Eur Food Res Technol 213:425–431Google Scholar
  35. 35.
    Arumuganathan K, Earle ED (1991) Plant Mol Biol Rep 9:211–215Google Scholar
  36. 36.
    Kay S, Van den Eede G (2001) Nature Biotechnol 19:405Google Scholar
  37. 37.
    Windels P, Taverniers I, Depicker A, Van Bockstaele E, De Loose M (2001) Eur Food Res Technol 213:107–112CrossRefGoogle Scholar
  38. 38.
    Prokisch J, Zeleny R, Trapmann S, Le Guern L, Schimmel H, Kramer GN, Pauwels J (2001) Fresen J Anal Chem 370:935–939CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Arne Holst-Jensen
    • 1
  • Sissel B. Rønning
    • 1
  • Astrid Løvseth
    • 1
  • Knut G. Berdal
    • 1
  1. 1.National Veterinary InstituteOsloNorway

Personalised recommendations