Advertisement

Analytical and Bioanalytical Chemistry

, Volume 375, Issue 4, pp 544–549 | Cite as

Simultaneous electrochemical determination of xanthine and uric acid at a nanoparticle film electrode

  • Yanyi Sun
  • Junjie Fei
  • Kangbing Wu
  • Shengshui HuEmail author
Original Paper

Abstract

A sensitive electrochemical method was developed for simultaneous determination of uric acid (UA) and xanthine (XA) at a glassy carbon electrode modified with multi-wall carbon nanotubes (MWNTs) film. The oxidation peak currents of UA and XA were increased at the MWNTs film electrode significantly. The experimental parameters, which influence the peak currents of UA and XA, such as the amount of MWNTs on the glassy carbon electrode, the pH of the solution, accumulation time, and scan rate, were optimized. Under optimum conditions, the peak currents were linear to the concentration of UA over the wide range from 1×10−7 mol L−1 to 1×10−4 mol L−1 and to that of XA over the wide range from 2×10−8 mol L−1 to 2×10−5 mol L−1. The interferences studies showed that the MWNTs-modified electrode exhibited excellent selectivity in the presence of ascorbic acid, dopamine, and hypoxanthine. The proposed procedure was successfully applied to detect UA and XA in human serum without any preliminary treatment.

Keywords

Multi-wall carbon nanotubes Uric acid Xanthine Modified glassy carbon electrode Voltammetry 

Abbreviations

MWNTS

multi-wall carbon nanotubes

UA

uric acid

XA

xanthine

GCE

glassy carbon electrode

DHP

dihexadecyl hydrogen phosphate

Notes

Acknowledgment

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 60171023) and the Natural Science Foundation of Hubei Province (No. 99J060).

References

  1. 1.
    Dutt VSE, Mottola HA (1974) Anal Chem 46:1777–1781PubMedGoogle Scholar
  2. 2.
    Carsol MA, Volpe G, Mascini M (1997) Talanta 44:2151–2159CrossRefGoogle Scholar
  3. 3.
    Ianniello RM, Lindsay TJ, Yacynych AM (1982) Anal Chem 54:1980–1984Google Scholar
  4. 4.
    Mckenna K, Brajter-Toth A (1987) Anal Chem 59:954–958PubMedGoogle Scholar
  5. 5.
    Rocheleau MJ, Purduy WC (1991) Electroanalysis 3:935–939Google Scholar
  6. 6.
    Gilmartin MAT, Hart JP (1994) Analyst 119:833–840PubMedGoogle Scholar
  7. 7.
    Tatsuma T, Watanabe T (1991) Anal Chim Acta 242:85–90CrossRefGoogle Scholar
  8. 8.
    Keedy FH, Vadgama P (1991) Biosens Bioelectron 6:491–499CrossRefPubMedGoogle Scholar
  9. 9.
    Cai X, Kalcher K, Neuhold C (1994) Fresenius J Anal Chem 348:660–665Google Scholar
  10. 10.
    Zen JM, Lai YY, Ilangovan G, Senthil Kumar A (2000) Electroanalysis 12:280–286CrossRefGoogle Scholar
  11. 11.
    Zen JM, Lai YY, Yang HH, Senthil Kumar A (2002) Sensors Actuat B 84:237–244CrossRefGoogle Scholar
  12. 12.
    Iijima S (1991) Nature 354:56–58Google Scholar
  13. 13.
    Ajayan PM (1999) Chem Rev 99:1787–1799CrossRefGoogle Scholar
  14. 14.
    Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nature 384:147–150Google Scholar
  15. 15.
    Wong S, Joselevich E, Woolley A, Cheung C, Lieber C (1998) Nature 394:52–55CrossRefPubMedGoogle Scholar
  16. 16.
    De Heer WA, Chatelain A, Ugarte D (1995) Science 270:1179–1180Google Scholar
  17. 17.
    De Heer WA, Bonard JM, Fauth K (1997) Adv Mater 9:87–89Google Scholar
  18. 18.
    Baughman RH, Cui CC, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Science 284:1340–1344PubMedGoogle Scholar
  19. 19.
    Tans S, Verschueren A, Dekker C (1998) Nature 393:49–52CrossRefGoogle Scholar
  20. 20.
    Che GL, Lakschmi BB, Fisher ER, Martin CR (1998) Nature 393:346–349CrossRefGoogle Scholar
  21. 21.
    Dresselhaus MS (1992) Nature 358:195–196Google Scholar
  22. 22.
    Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127–1129CrossRefPubMedGoogle Scholar
  23. 23.
    Chen P, Wu X, Lin J, Tan KL (1999) Science 285:91-93CrossRefPubMedGoogle Scholar
  24. 24.
    Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho K, Dai HJ (2000) Science 287:622–625CrossRefPubMedGoogle Scholar
  25. 25.
    Britto PJ, Santhanam KSV, Ajayan PM (1996) Bioelectrochem Bioenerg 41:121–125Google Scholar
  26. 26.
    Britto PJ, Santhanam KSV, Alonso V, Rubio A, Ajayan PM (1999) Adv Mater 11:154–157CrossRefGoogle Scholar
  27. 27.
    Davis JJ, Coles RJ, Hill HAO (1997) J Electroanal Chem 440:279–282Google Scholar
  28. 28.
    Luo h, Shi Z, Li N, Gu Z, Zhuang Q (2000) Chem J Chin Univ 21:1372–1374Google Scholar
  29. 29.
    Luo h, Shi Z, Li N, Gu Z, Zhuang Q (2001) Anal Chem 73:915–920CrossRefPubMedGoogle Scholar
  30. 30.
    Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993–1997CrossRefGoogle Scholar
  31. 31.
    Tsang SC, Chen YK, Harris PJF, Green MLH (1994) Nature 372:159–162Google Scholar
  32. 32.
    Dryhurst G (1972) J Electrochem Soc 119:1659–1664Google Scholar
  33. 33.
    Laviron E (1974) J Elctroanal Chem 52:355–393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Yanyi Sun
    • 1
    • 2
  • Junjie Fei
    • 1
  • Kangbing Wu
    • 1
  • Shengshui Hu
    • 1
    Email author
  1. 1.Department of ChemistryWuhan UniversityWuhanP.R. China
  2. 2.Technology College of XiangfanXiangfan P.R. China

Personalised recommendations