Advertisement

Analytical and Bioanalytical Chemistry

, Volume 375, Issue 7, pp 891–895 | Cite as

AES and SIMS investigation of diffusion barriers for copper metallization in power-SAW devices

  • S. BaunackEmail author
  • S. Menzel
  • M. Pekarčíková
  • H. Schmidt
  • M. Albert
  • K. Wetzig
Special Issue Paper

Abstract

Barrier layers for Cu-metallization in surface acoustic wave (SAW) devices were investigated by AES and SIMS depth profiles. Two layered systems on LiNbO3 substrate have been analyzed after annealing in air up to 400 °C. The investigated systems were (A) Ta(20 nm)/Cu(150 nm)/Ti(30 nm), deposited by electron beam evaporation, and (B) Ta30Si18N52(50 nm)/Cu(150 nm)/Ta30Si18N52(50 nm) deposited by magnetron sputtering. In system A the Ta layer shows oxidation in air for T≥300 °C. Ti from the buffer layer diffuses into the Cu at about 100 °C, and segregates at the Ta/Cu interface for T≥200 °C. Oxidation of the Ti layer starts at 300 °C. But no remarkable amounts of oxygen could be found in the Cu film. The depth profiles show that the TaSiN layer in system B operates as a more effective barrier for the Cu-SAW technology up to more than 300 °C.

Keywords

Cu metallization Diffusion barrier Depth profiling AES SIMS 

Notes

Acknowledgment

The authors thank R. Hübner for providing the Cu/TaSiN samples and U. Merkel from the Semiconductor and Microsystems Technology Laboratory of the Dresden University of Technology for support in thin film deposition.

References

  1. 1.
    Menzel S, Schmidt H, Wetzig K, Weihnacht M (2000) In: Proc 12th European Congress Electron Microscopy, II:541–542Google Scholar
  2. 2.
    Menzel S, Schmidt H, Weihnacht M, Wetzig K (2002) In: Baker SP et al. (eds) Stress-induced phenomena in metallization, AIP Conference Proceedings, 612:133–141Google Scholar
  3. 3.
    Schmidt H, Menzel S, Weihnacht M, Kunze R (2001) Proc IEEE Ultrasonics Symp 97–100Google Scholar
  4. 4.
    Hara T, Tanaka M, Sakiyama K, Onishi S, Ishihara K, Kudo J (1997) Jpn J Appl Phys 36:L893–L895Google Scholar
  5. 5.
    Kim DJ, Kim YT, Park J-W (1997) J Appl Phys 82:4847–4851CrossRefGoogle Scholar
  6. 6.
    Cabral Jr C, Saenger KL (2000) J Mater Res 15:194–198Google Scholar
  7. 7.
    Hofmann S, Sanz JM (1983) Fresenius Z Anal Chem 314:215–219Google Scholar
  8. 8.
    Veisfeld N, Geller J (1988) J Vac Sci Technol A6:2077–2081Google Scholar
  9. 9.
    Röll K (1980) Appl Surf Sci 5:388–393CrossRefGoogle Scholar
  10. 10.
    Restoin C, Darraudtaupiac C, Decossas JL, Vareille JC, Hauden J, Martinez A (2000) J Appl Phys 88:6665–6668CrossRefGoogle Scholar
  11. 11.
    McCoy MA, Dregia SA, Lee WE (1994) J Mater Res 9:2040–2050Google Scholar
  12. 12.
    Yoshitake M, Yoshihara K (1992) Surf Interface Anal 18:509–513Google Scholar
  13. 13.
    Yoshitake M, Yoshihara K (1991) J Jpn Inst Met 55:773–778Google Scholar
  14. 14.
    Zaporozchenko VI, Vojtusik SS, Stepanova MG, Zagorenko AI (1991) Surf Sci 251:159–164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • S. Baunack
    • 1
    Email author
  • S. Menzel
    • 1
  • M. Pekarčíková
    • 1
  • H. Schmidt
    • 1
  • M. Albert
    • 2
  • K. Wetzig
    • 1
  1. 1.Leibniz-Institut für Festkörper- und Werkstoffforschung DresdenDresdenGermany
  2. 2.Institut für Halbleiter- und MikrosystemtechnikTechnische Universität DresdenDresdenGermany

Personalised recommendations