Knoevenagel condensation versus Michael addition reaction in ionic-liquid-catalyzed synthesis of hexahydroquinoline: a SMD–DFT study

  • R. Behjatmanesh-ArdakaniEmail author
  • N. Safaeian
  • M. Oftadeh
  • M. Fallah-Mehrjardi
Regular Article


Knoevenagel condensation and Michael addition reaction are two different mechanisms for C–C bond formation. In this work, M06-2X method is used to compare activation free energies of Knoevenagel condensation and Michael addition reaction in the gas and ionic liquid phases. The role of 2-ethyl imidazolium hydrogen sulfate in the synthesis of hexahydroquinolines is investigated. To model ionic liquid phase, SMD continuum universal solvation model is used. Data show that Knoevenagel condensation and Michael addition have activation free energies of 45 and 13 kcal mol−1 in the gas phase and + 24 and + 12 kcal mol−1 in the ionic solution phase, respectively. The final cyclization process has zero barrier energy. Analyzing TS structures by the quantum theory of atoms in molecules (QTAIM) show that the TS structure of Knoevenagel step is similar to the product, while the TS structure of Michael addition step is similar to the reactants.


Knoevenagel condensation Michael addition Ionic liquid Hexahydroquinoline DFT Transition state 



We would like to thank Payame Noor University for supporting this work.


  1. 1.
    Keaveney ST, White BP, Haines RS, Harper JB (2016) The effects of an ionic liquid on unimolecular substitution processes: the importance of the extent of transition state solvation. Org Biomol Chem 14(8):2572–2580. CrossRefPubMedGoogle Scholar
  2. 2.
    Jiao M, Ju Y-w, Chen B-Z (2018) Energy transfer or electron transfer?—DFT study on the mechanism of [2 + 2] cycloadditions induced by visible light photocatalysts. Tetrahedron Lett 59(17):1651–1660. CrossRefGoogle Scholar
  3. 3.
    Wu C, Mao S, Deng G, Qiu Y (2018) Regioselective addition of Ti enolates to conjugated enones: new insights into the mechanism based on experimental and DFT investigation. Tetrahedron 74(23):2819–2824. CrossRefGoogle Scholar
  4. 4.
    Ghorbani M, Noura S, Oftadeh M, Zolfigol M (2015) Novel ionic liquid [2-Eim] HSO4 as a dual catalytic-solvent system for preparation of hexahydroquinolines under green conditions. RSC Adv 5(68):55303–55312. CrossRefGoogle Scholar
  5. 5.
    Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun 180(11):2175–2196. CrossRefGoogle Scholar
  6. 6.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59(11):7413. CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215–241. CrossRefGoogle Scholar
  8. 8.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654. CrossRefGoogle Scholar
  9. 9.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72(10):5639–5648. CrossRefGoogle Scholar
  10. 10.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Wallingford CTGoogle Scholar
  11. 11.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904. CrossRefGoogle Scholar
  12. 12.
    Weinan E, Ren W, Vanden-Eijnden E (2007) Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J Chem Phys 126(16):164103. CrossRefGoogle Scholar
  13. 13.
    Hratchian HP, Schlegel HB (2005) Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Dykstra CE, Scuseria G, Frenking G (eds) Theory and applications of computational chemistry. Elsevier, Amsterdam, pp 195–249CrossRefGoogle Scholar
  14. 14.
    Bernales VS, Marenich AV, Contreras R, Cramer CJ, Truhlar DG (2012) Quantum mechanical continuum solvation models for ionic liquids. J Phys Chem B 116(30):9122–9129. CrossRefPubMedGoogle Scholar
  15. 15.
    Keith TA (2010) AIMAll (Version 10.05.04), Overland Park KS, USAGoogle Scholar
  16. 16.
    Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34(16):1429–1437. CrossRefPubMedGoogle Scholar
  17. 17.
    Patek M (2018) NBO scripts and handy applications.
  18. 18.
    Knoevenagel E (1898) Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Ber Dtsch Chem Ges 31(3):2596–2619. CrossRefGoogle Scholar
  19. 19.
    Bader RFW (1994) Atoms in molecules a quantum theory. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations