Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Study of organic reactions using chemical reactivity descriptors derived through a temperature-dependent approach

  • 38 Accesses

Abstract

Using the ratio of two fluctuations in the temperature-dependent density functional theory, the local counterpart of a global response function and the linear (non-local) counterpart of a local response function can be constructed. Here, we analyze the local chemical potential, local hardness, Fukui kernel and dual descriptor kernel and test their performance for describing and interpreting reactivity features for a diverse set of organic chemical reactions, including acid–base reactions, aliphatic nucleophilic substitutions, aromatic electrophilic substitutions and Markovnikov additions. Despite important differences in size and functionalization between some substrates belonging to a given chemical reaction type, temperature-dependent chemical reactivity descriptors were able to reproduce experimental or computational trends in all cases. We identify relevant chemical interactions belonging to a particular family of reactions and the molecular moieties responsible for such interactions. In general, our results are consistent with traditional chemical interpretations. However, in some cases the information contained in the temperature-dependent chemical reactivity descriptors allows one to gain new insights about the organic chemistry reactions considered here.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

  2. 2.

    Fukui K (1982) Science 218:747–754

  3. 3.

    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

  4. 4.

    Matta CF, Boyd RJ (2007) An introduction to the quantum theory of atoms in molecules. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim, pp 1–34

  5. 5.

    Popelier P (2016) Quantum chemical topology. In: Mingos M (ed) The chemical bond-100 years old and getting stronger. Springer, Basel, pp 71–117

  6. 6.

    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

  7. 7.

    Chermette H (1999) J Comput Chem 20:129–154

  8. 8.

    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

  9. 9.

    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520–534

  10. 10.

    Gázquez JL (2008) J Mex Chem Soc 52:3–10

  11. 11.

    Liu SB (2009) Acta Phys Chim Sin 25:590–600

  12. 12.

    Chattaraj PK (ed) (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton

  13. 13.

    Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT”. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764

  14. 14.

    Fuentealba P, Cardenas C (2015) Density functional theory of chemical reactivity. In: Joswig JO, Springborg M (eds) Chemical modelling: a specialist periodical report, vol 11. Royal Society of Chemistry, London, pp 151–174

  15. 15.

    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

  16. 16.

    Mulliken RS (1934) J Chem Phys 2:782–793

  17. 17.

    Pearson RG (1963) J Am Chem Soc 85:3533–3539

  18. 18.

    Pearson RG (1966) Science 151:172–177

  19. 19.

    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

  20. 20.

    Pearson RG (1997) Chemical hardness. Wiley-VCH, Weinheim

  21. 21.

    Ayers PW (2007) Faraday Discuss 135:161–190

  22. 22.

    Pearson RG (2009) The hardness of closed systems. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton, pp 155–162

  23. 23.

    Pauling L (1932) J Am Chem Soc 54:3570–3582

  24. 24.

    Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, New York

  25. 25.

    Iczkowski R, Margrave JL (1961) J Am Chem Soc 83:3547–3551

  26. 26.

    Jensen WB (1980) The Lewis acid-base concepts: an overview. Wiley, Hoboken

  27. 27.

    Parr RG, Yang WT (1984) J Am Chem Soc 106:4049–4050

  28. 28.

    Yang WT, Parr RG, Pucci R (1984) J Chem Phys 81:2862–2863

  29. 29.

    Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010–2018

  30. 30.

    Morell C, Grand A, Toro-Labbe A (2005) J Phys Chem A 109:205–212

  31. 31.

    Morell C, Grand A, Toro-Labbe A (2006) Chem Phys Lett 425:342–346

  32. 32.

    Franco-Pérez M, Gázquez JL, Vela A (2015) J Chem Phys 143:024112

  33. 33.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2015) J Chem Phys 143:154103

  34. 34.

    Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2015) J Chem Phys 143:244117

  35. 35.

    Franco-Pérez M, Ayers PW, Gázquez JL (2016) Theor Chem Acc 135:199

  36. 36.

    Franco-Pérez M, Heidar-Zadeh F, Ayers PW, Gázquez JL, Vela A (2017) Phys Chem Chem Phys 19:11588–11602

  37. 37.

    Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2017) Phys Chem Chem Phys 19:13687–13695

  38. 38.

    Franco-Pérez M, Ayers P, Gázquez JL, Vela A (2017) Phys Chem Chem Phys 19:16095–16104

  39. 39.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2017) J Chem Phys 147:074113

  40. 40.

    Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2017) J Chem Phys 147:094105

  41. 41.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2017) J Chem Theory Comput 14:597–606

  42. 42.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2018) Acta Phys Chim Sin 34:683–691

  43. 43.

    Gázquez JL, Franco-Pérez M, Ayers PW, Vela A (2019) Int J Quantum Chem 119:e25797

  44. 44.

    Polanco-Ramírez CA, Franco-Pérez M, Carmona-Espíndola J, Gázquez JL, Ayers PW (2017) Phys Chem Chem Phys 19:12355–12364

  45. 45.

    Franco-Perez M, Polanco-Ramirez CA, Gazquez JL, Ayers PW (2018) Phys Chem Chem Phys 20:9011–9014

  46. 46.

    Robles A, Franco-Perez M, Gazquez JL, Cardenas C, Fuentealba P (2018) J Mol Model 24:245

  47. 47.

    Franco-Perez M, Polanco-Ramirez CA, Gazquez JL, Ayers PW (2018) J Mol Model 24:285

  48. 48.

    Mermin ND (1965) Phys Rev 137:A1441–A1443

  49. 49.

    Kohn W, Vashishta P (1983) In: Lundqvist S, March NH (eds) Theory of the inhomogeneous electron gas. Plenum, New York, pp 79–148

  50. 50.

    Yang WT, Parr RG (1985) Proc Natl Acad Sci USA 82:6723–6726

  51. 51.

    Berkowitz M, Parr RG (1988) J Chem Phys 88:2554–2557

  52. 52.

    Chattaraj PK, Liu GH, Parr RG (1995) Chem Phys Lett 237:171–176

  53. 53.

    Chattaraj PK, Cedillo A, Parr RG (1996) Chem Phys 204:429–437

  54. 54.

    Torrent-Sucarrat M, De Proft F, Geerlings P, Ayers PW (2008) Chem Eur J 14:8652–8660

  55. 55.

    Torrent-Sucarrat M, De Proft F, Ayers PW, Geerlings P (2010) Phys Chem Chem Phys 12:1072–1080

  56. 56.

    Ayers PW, Parr RG (2008) J Chem Phys 129:054111

  57. 57.

    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443

  58. 58.

    Toro-Labbe A, Jaque P, Murray JS, Politzer P (2005) Chem Phys Lett 407:143–146

  59. 59.

    Murray JS, Politzer P (1998) Average local ionization energies: significance and applications. In: Parkanyi C (ed) Theoretical organic chemistry. Elsevier, Amsterdam, pp 189–202

  60. 60.

    Murray JS, Peralta-Inga Z, Politzer P, Ekanayake K, Lebreton P (2001) Int J Quantum Chem 83:245–254

  61. 61.

    Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27

  62. 62.

    Clark T (2010) J Mol Model 16:1231–1238

  63. 63.

    Brinck T, Carlqvist P, Stenlid JH (2016) J Phys Chem A 120:10023–10032

  64. 64.

    Stenlid JH, Brinck T (2017) J Org Chem 82:3072–3083

  65. 65.

    Meneses L, Tiznado W, Contreras R, Fuentealba P (2004) Chem Phys Lett 383:181–187

  66. 66.

    Meneses L, Araya A, Pilaquinga F, Contreras R, Fuentealba P (2007) Chem Phys Lett 446:170–175

  67. 67.

    Cardenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113:8660–8667

  68. 68.

    Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Chem Soc Rev 43:4989–5008

  69. 69.

    Prodan E, Kohn W (2005) Proc Natl Acad Sci USA 102:11635–11638

  70. 70.

    Fias S, Heidar-Zadeh F, Geerlings P, Ayers PW (2017) Proc Natl Acad Sci USA 114:11633–11638

  71. 71.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

  72. 72.

    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

  73. 73.

    Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036

  74. 74.

    Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889–2899

  75. 75.

    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

  76. 76.

    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

  77. 77.

    Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 127:034102

  78. 78.

    Hirshfeld FL (1977) Theor Chim Acta 44:129–138

  79. 79.

    Nalewajski RF, Parr RG (2000) Proc Natl Acad Sci USA 97:8879–8882

  80. 80.

    Roy RK, Pal S, Hirao K (1999) J Chem Phys 110:8236–8245

  81. 81.

    Geudtner G, Calaminici P, Carmona-Espíndola J, del Campo JM, Dominguez-Soria VD, Flores-Moreno R, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vasquez-Perez JM, Vela A, Zuñiga-Gutierrez B, Salahub DR (2012) Wiley Interdiscip Rev Comput Mol Sci 2:548

  82. 82.

    Albert A, Serjeant EP (1962) Ionization constants of acids and bases: a laboratory manual. Methuen, London

  83. 83.

    Haynes WM (2014) CRC handbook of chemistry and physics. CRC Press, Boca Raton

  84. 84.

    Sakti AW, Nishimura Y, Nakai H (2017) J Chem Theory Comput 14:351–356

  85. 85.

    McMurry J, Simanek E (2007) Fundamentals of organic chemistry, 6th edn. Thomson Higher Education, Belmont

  86. 86.

    Rossi RA, Pierini AB, Peñéñory AB (2003) Chem Rev 103:71–168

  87. 87.

    Vela A, Gázquez JL (1990) J Am Chem Soc 112:1490–1492

  88. 88.

    Jug U, Pregeljc D, Mavri J, Vianello R, Stare J (2017) Comput Theor Chem 1116:96–101

  89. 89.

    Markovnikov V (1870) Liebigs Ann Chem 153:228–259

  90. 90.

    Mortier J (2015) Arene chemistry: reaction mechanisms and methods for aromatic compounds. Wiley, New York

  91. 91.

    Olah GA, Kuhn SJ, Flood SH, Hardie BA (1964) J Am Chem Soc 86:1044–1046

  92. 92.

    Gnaim JM, Sheldon RA (1995) Tetrahedron Lett 36:3893–3896

  93. 93.

    Olah GA, Kuhn SJ (1962) J Am Chem Soc 84:3684–3687

  94. 94.

    Roberts JD, Sanford JK, Sixma F, Cerfontain H, Zagt R (1954) J Am Chem Soc 76:4525–4534

  95. 95.

    Kovacic P, Hiller JJ Jr (1965) J Org Chem 30:1581–1588

  96. 96.

    Eaborn C, Taylor R (1961) J Chem Soc 463:2388–2393

  97. 97.

    Schnatter WF, Rogers DW, Zavitsas AA (2013) J Phys Chem A 117:13079–13088

Download references

Acknowledgements

We thank the Laboratorio Nacional de Cómputo de Alto Desempeño for the use of their facilities through the Laboratorio de Supercómputo y Visualización of Universidad Autónoma Metropolitana-Iztapalapa. PWA and MFP thank NSERC, the Canada Research Chairs, Compute Canada, and Canarie for support. MFP also thanks Universidad Autónoma Metropolitana-Iztapalapa for a visiting professor invitation. JLG and AV thank Conacyt for Grants 237045 and Fronteras-867, respectively. CPR was supported in part by Conacyt through a doctoral fellowship.

Author information

Correspondence to Marco Franco-Pérez or José L. Gázquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 211 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franco-Pérez, M., Polanco-Ramírez, C.A., Gázquez, J.L. et al. Study of organic reactions using chemical reactivity descriptors derived through a temperature-dependent approach. Theor Chem Acc 139, 44 (2020). https://doi.org/10.1007/s00214-020-2557-4

Download citation

Keywords

  • Temperature-dependent reactivity indicators
  • Organic reactions
  • Local chemical potential
  • Local hardness
  • Fukui kernel
  • Dual descriptor kernel