Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transition-metal-free polycyclic indoline formation via a free radical pathway: a computational mechanistic study


The mechanism of [2 + 2 + 1] cyclization reactions to access polycyclic sulfonyl indolines via Fe(II)-catalyzed or UV-driven has been investigated by density functional theory (DFT) methods. Mechanistic studies aided by the DFT calculations suggest that the reaction might proceed via a free radical pathway with HSO3· serving as the initiator and terminator of the free radical reaction, which has never been reported to our knowledge. The reactions involve the formation of two five-membered rings. The calculated results show that the first five-membered ring formation is the rate-determining step, with an energy barrier of 3.2 kcal/mol. And the second five-membered ring formation is an exergonic process. It is worth noting that HSO3· radicals are involved in the reaction preceding the formation of the second ring, and they facilitate formation of the second ring. Meanwhile, the most active site was predicted by the condensed Fukui function (CFF) and verified by DFT calculations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Lounasmaa M, Tolvanen A (2000) Nat Prod Rep 17:175–191

  2. 2.

    Chen JB, Jia YX (2017) Org Biomol Chem 15:3550–3567

  3. 3.

    Wang X, Wang SY, Ji SJ (2013) Org Lett 15:1954–1957

  4. 4.

    Khand IU, Knox GR, Pauson PL, Watts WE (1971) J Chem Soc Chem Commun 1:36a

  5. 5.

    Pauson PL, Khand IU (1977) Ann N Y Acad Sci 295:2–14

  6. 6.

    Geis O, Schmalz H-G (1998) Angew Chem Int Ed 37:911–914

  7. 7.

    Shi L, Yang Z (2016) Eur J Org Chem 2016:2356–2368

  8. 8.

    Gibson SE, Stevenazzi A (2003) Angew Chem Int Ed 42:1800–1810

  9. 9.

    Gibson SE, Mainolfi N (2005) Angew Chem Int Ed 44:3022–3037

  10. 10.

    Shibata T (2006) Adv Synth Catal 348:2328–2336

  11. 11.

    Chen Y, Murray PRD, Davies AT, Willis MC (2018) J Am Chem Soc 140:8781–8787

  12. 12.

    Zhang F, Zheng D, Lai L, Cheng J, Sun J, Wu J (2018) Org Lett 20:1167–1170

  13. 13.

    Davies AT, Curto JM, Bagley SW, Willis MC (2017) Chem Sci 8:1233–1237

  14. 14.

    Liu F, Wang JY, Zhou P, Li G, Hao WJ, Tu SJ, Jiang B (2017) Angew Chem Int Ed 56:15570–15574

  15. 15.

    Lu L, Luo C, Peng H, Jiang H, Lei M, Yin B (2019) Org Lett 21:2602–2605

  16. 16.

    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

  17. 17.

    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J Jr, Vreven T, Kudin K, Burant J (2003) Gaussian 09. Gaussian Inc, Wallingford

  18. 18.

    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

  19. 19.

    Lei M, Pan Y, Ma X (2015) Eur J Inorg Chem 5:794–803

  20. 20.

    Li L, Zhu H, Liu L, Song D, Lei M (2018) Inorg Chem 57:3054–3060

  21. 21.

    Li P, Xi Y, Li L, Li H, Sun W-H, Lei M (2018) Inorg Chim Acta 477:34–39

  22. 22.

    Chen Y, Tang Y, Liu S, Lei M, Fang W (2009) Organometallics 28:2078–2084

  23. 23.

    Xiao M, Yue X, Xu R, Tang W, Xue D, Li C, Lei M, Xiao J, Wang C (2019) Angew Chem Int Ed 58:10528–10536

  24. 24.

    Chen Y, Liu S, Lei M (2008) J Phys Chem C 112:13524

  25. 25.

    Chen Z, Chen Y, Tang Y, Lei M (2010) Dalton Trans 39:2036–2043

  26. 26.

    Guo X, Tang Y, Zhang X, Lei M (2011) J Phys Chem A 115:12321–12330

  27. 27.

    Yue X, Li L, Li P, Luo C, Pu M, Yang Z, Lei M (2019) Chin J Chem 37:883–886

  28. 28.

    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

  29. 29.

    Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

  30. 30.

    Liu S (2009) Acta Phys Chim Sin 25:590–600

  31. 31.

    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

  32. 32.

    Fu R, Lu T, Chen F (2014) Acta Phys Chim Sin 30:628–639

  33. 33.

    De Proft F, Liu S, Geerlings P (1998) J Chem Phys 108:7549–7554

  34. 34.

    Zhou P, Ayers PW, Liu S, Li T (2012) Phys Chem Chem Phys 14:9890–9896

  35. 35.

    Jin JL, Li HB, Lu T, Duan YA, Geng Y, Wu Y, Su ZM (2013) J Mol Model 19:3437–3446

  36. 36.

    Manzetti S, Lu T (2013) J Phys Org Chem 26:473–483

  37. 37.

    Oláh J, Van Alsenoy C, Sannigrahi AB (2002) J Phys Chem A 106:3885–3890

  38. 38.

    Wang B, Rong C, Chattaraj PK, Liu S (2019) Theor Chem Acc 138:124

Download references


This work is supported by the National Natural Science Foundation of China (Grant No. 21672018) and the Fundamental Research Funds for the Central Universities (XK1802-6). We thank the National Supercomputing Center in Tianjin (TianHe-1) for providing part of the computational sources.

Author information

Correspondence to Biaolin Yin or Ming Lei.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 384 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Lu, L., Zhang, L. et al. Transition-metal-free polycyclic indoline formation via a free radical pathway: a computational mechanistic study. Theor Chem Acc 139, 43 (2020).

Download citation


  • [2 + 2 + 1] Cyclization reactions
  • Polycyclic sulfonyl indolines
  • Mechanism
  • Free radical
  • Condensed Fukui function