Advertisement

3d-transition metals (Cu, Fe, Mn, Ni, V and Zn)-doped pentacene π-conjugated organic molecule for photovoltaic applications: DFT and TD-DFT calculations

  • 44 Accesses

Abstract

In this study, we have performed a thorough examination of density functional theory (DFT) and time-dependent (TD) DFT to investigate the structural and optoelectronic properties of 3d-transition metals (Cu, Fe, Mn, Ni, V and Zn)-doped pentacene π-conjugated organic molecule. The HOMO energy level of Ni-doped pentacene is − 6.17 eV wide, i.e., about 1.31 eV greater and more negative than pentacene. The bandgap of the pentacene considerable decreases from 2.20 eV to 1.32, 1.35 and 0.37 eV, for Mn, Zn and V-doped pentacene structures, respectively, which affords an efficient charge transfer from HOMO to LUMO. The HOMOLUMO energy gap is higher (4.44 eV, for Ni-doped pentacene), implying that the kinetic energy is higher and high chemical reactivity. We have examined, additionally, the reactivity and absorption properties of individual undoped and 3d-transition metals-doped pentacene. Pentacene has the largest vertical ionization potential (6.18 eV), corresponding to the highest chemical stability. Our results suggest that the new 3d-transition metals-doped pentacene may significantly contribute to the efficiency of solar cells.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Rieger R, Kastler M, Enkelmann V, Müllen K (2008) Entry to coronene chemistry—making large electron donors and acceptors. Chem A Eur J 14:6322–6325. https://doi.org/10.1002/chem.200800832

  2. 2.

    Duan C, Zhang K, Zhong C, Huang F, Cao Y (2013) Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. Chem Soc Rev 42:9071–9104. https://doi.org/10.1039/C3CS60200A

  3. 3.

    Beaujuge PM, Fréchet JMJ (2011) Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 133:20009–20029. https://doi.org/10.1021/ja2073643

  4. 4.

    Facchetti A (2011) π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733–758. https://doi.org/10.1021/cm102419z

  5. 5.

    Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem Mater 16:1806–1812. https://doi.org/10.1021/cm0349708

  6. 6.

    Rieger R (2009) Extended donor and acceptor molecules for organic electronics. Dissertation on the degree “Doctor of Science”, The Department of Chemistry, pharmacy and Geosciences Johannes Gutenberg—university Mainz

  7. 7.

    Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Pentacene-based organic thin-film transistors. IEEE Trans Electron Devices 44:1325–1331. https://doi.org/10.1109/16.605476

  8. 8.

    Nelson SF, Lin YY, Gundlach DJ, Jackson TN (1998) Temperature-independent transport in high-mobility pentacene transistors. Appl Phys Lett 72:1854–1856. https://doi.org/10.1063/1.121205

  9. 9.

    Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117. https://doi.org/10.1002/1521-4095(20020116)14:2%3c99:AID-ADMA99%3e3.0.CO;2-9

  10. 10.

    Chason M, Brazis PW, Zhang H, Kalyanasundaram K, Gamota DR (2005) Printed organic semiconducting devices. Proc IEEE 93:1348–1356. https://doi.org/10.1109/JPROC.2005.850306

  11. 11.

    Yang H, Shin TJ, Ling M-M, Cho K, Ryu CY, Bao Z (2005) Conducting AFM and 2D GIXD studies on pentacene thin films. J Am Chem Soc 127:11542–11543. https://doi.org/10.1021/ja052478e

  12. 12.

    Heringdorf F, Reuter MC, Tromp RM (2001) Growth dynamics of pentacene thin films. Nature 412:517–520. https://doi.org/10.1038/35087532

  13. 13.

    Yang J, Nguyen T-Q (2007) Effects of thin film processing on pentacene/C60 bilayer solar cell performance. Org Electron 8:566–574. https://doi.org/10.1016/j.orgel.2007.04.005

  14. 14.

    Nanditha DM, Dissanayake M, Hatton RA, Curry RJ, Silva SRP (2007) Operation of a reversed pentacene-fullerene discrete heterojunction photovoltaic device. Appl Phys Lett 90:113505. https://doi.org/10.1063/1.2713345

  15. 15.

    Pandey AK, Unni KNN, Nunzi J-M (2006) Pentacene/perylene co-deposited solar cells. Thin Solid Films 511–512:529–532. https://doi.org/10.1016/j.tsf.2005.12.015

  16. 16.

    Yoo S, Domercq B, Kippelen B (2004) Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl Phys Lett 85:5427–5429. https://doi.org/10.1063/1.1829777

  17. 17.

    Yoo S, Domercq B, Kippelen B (2005) Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60. J Appl Phys 97:103706. https://doi.org/10.1063/1.1895473

  18. 18.

    Pandey AK, Nunzi J-M (2006) Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells. Appl Phys Lett 89:213506. https://doi.org/10.1063/1.2396927

  19. 19.

    Senadeera GKR, Jayaweera PVV, Perera VPS, Tennakone K (2002) Solid-state dye-sensitized photocell based on pentacene as a hole collector. Sol Energy Mater Sol Cells 73:103–108. https://doi.org/10.1016/S0927-0248(01)00143-X

  20. 20.

    Unni KNN, Pandey AK, Alem S, Nunzi J-M (2006) Ambipolar organic field-effect transistor fabricated by co-evaporation of pentacene and N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide. Chem Phys Lett 421:554–557. https://doi.org/10.1016/j.cplett.2006.01.113

  21. 21.

    Anthony JE (2008) The larger acenes: versatile organic semiconductors. Angew Chemie Int Ed 47:452–483. https://doi.org/10.1002/anie.200604045

  22. 22.

    Lloyd MT, Mayer AC, Tayi AS, Bowen AM, Kasen TG, Herman DJ, Mourey DA, Anthony JE, Malliaras GG (2006) Photovoltaic cells from a soluble pentacene derivative. Org Electron 7:243–248. https://doi.org/10.1016/j.orgel.2006.03.002

  23. 23.

    Lloyd MT, Mayer AC, Subramanian S, Mourey DA, Herman DJ, Bapat AV, Anthony JE, Malliaras GG (2007) Efficient solution-processed photovoltaic cells based on an anthradithiophene/fullerene blend. J Am Chem Soc 129:9144–9149. https://doi.org/10.1021/ja072147x

  24. 24.

    Palilis LC, Lane PA, Kushto GP, Purushothaman B, Anthony JE, Kafafi ZH (2008) Organic photovoltaic cells with high open circuit voltages based on pentacene derivatives. Org Electron 9:747–752. https://doi.org/10.1016/j.orgel.2008.05.015

  25. 25.

    Tang Q, Liang Z, Liu J, Xu J, Miao Q (2010) N-heteroquinones: quadruple weak hydrogen bonds and n-channel transistors. Chem Commun 46:2977. https://doi.org/10.1039/c001215g

  26. 26.

    Qu H, Shen H, Li J, Men Y, Chen X, Chong Z (2018) Synthesis and characterization of three pentacene derivatives. Trans Tianjin Univ 24:453–460. https://doi.org/10.1007/s12209-018-0136-8

  27. 27.

    Pramanik A, Sarkar S, Pal S, Sarkar P (2015) Pentacene–fullerene bulk-heterojunction solar cell: a computational study. Phys Lett A 379:1036–1042. https://doi.org/10.1016/j.physleta.2015.01.040

  28. 28.

    Pedersen TM (2008) Electronic structure of manganese doped pentacene. University of Saskatchewan

  29. 29.

    Long G, Yang X, Chen W, Zhang M, Zhao Y, Chen Y, Zhang Q (2016) “Doping” pentacene with sp(2)-phosphorus atoms: towards high performance ambipolar semiconductors. Phys Chem Chem Phys 18:3173–3178. https://doi.org/10.1039/c5cp06200d

  30. 30.

    Schweicher G, Olivier Y, Lemaur V, Geerts YH (2014) What currently limits charge carrier mobility in crystals of molecular semiconductors? Isr J Chem 54:595–620. https://doi.org/10.1002/ijch.201400047

  31. 31.

    Becke AD (1993) A new mixing of Hatree–Fock and local density functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

  32. 32.

    Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

  33. 33.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas JB, Foresman JV, Ortiz J, Cioslowski DJ Fox (2009) Gaussian 09, Revision E.01. Gaussian Inc., Wallingford

  34. 34.

    Pearson RG (1993) The principle of maximum hardness. Acc Chem Res 26:250–255. https://doi.org/10.1021/ar00029a004

  35. 35.

    Parr RG, Pearson RG (1983) Absolute hardness—companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/ja00364a005

  36. 36.

    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

  37. 37.

    Muz İ, Kurban M (2019) Enhancement of electronic, photophysical and optical properties of 5,5′-Dibromo-2,2′-bithiophene molecule: new aspect to molecular design. Opto-Electron Rev 27:113–118. https://doi.org/10.1016/j.opelre.2019.03.002

  38. 38.

    Kurban M (2018) Electronic structure, optical and structural properties of Si, Ni, B and N-doped a carbon nanotube: DFT study. Optik (Stuttg) 172:295–301. https://doi.org/10.1016/j.ijleo.2018.07.028

  39. 39.

    Gunduz B, Kurban M (2018) Photonic, spectroscopic properties and electronic structure of PTCDI-C8 organic nanostructure. Vib Spectrosc 96:46–51. https://doi.org/10.1016/j.vibspec.2018.02.008

  40. 40.

    Campbell RB, Robertson JM, Trotter J (1961) The crystal and molecular structure of pentacene. Acta Crystallogr 14:705–711. https://doi.org/10.1107/S0365110X61002163

  41. 41.

    Dierksen M, Grimme S (2004) Density functional calculations of the vibronic structure of electronic absorption spectra. J Chem Phys 120:3544–3554. https://doi.org/10.1063/1.1642595

  42. 42.

    Kadantsev ES, Stott MJ, Rubio A (2006) Electronic structure and excitations in oligoacenes from ab initio calculations. J Chem Phys 124:134901. https://doi.org/10.1063/1.2186999

  43. 43.

    Maliakal A, Raghavachari K, Katz H, Chandross E, Siegrist T (2004) Photochemical stability of pentacene and a substituted pentacene in solution and in thin films. Chem Mater 16:4980–4986. https://doi.org/10.1021/cm049060k

  44. 44.

    Gruhn NE, da Silva DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Bredas JL (2002) The vibrational reorganization energy in pentacene: molecular influences on charge transport. J Am Chem Soc 124:7918–7919. https://doi.org/10.1021/ja0175892

  45. 45.

    Moss TS (1985) Relations between the refractive index and energy gap of semiconductors. Phys Status Solidi 131:415–427. https://doi.org/10.1002/pssb.2221310202

Download references

Author information

Correspondence to Mustafa Kurban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muz, İ., Göktaş, F. & Kurban, M. 3d-transition metals (Cu, Fe, Mn, Ni, V and Zn)-doped pentacene π-conjugated organic molecule for photovoltaic applications: DFT and TD-DFT calculations. Theor Chem Acc 139, 23 (2020) doi:10.1007/s00214-020-2544-9

Download citation

Keywords

  • Pentacene
  • 3d-transition metals
  • Bandgap
  • TD-DFT