Advertisement

A DFT study on the oxidation of cyclotrisilene by nitrous oxide: the σ- and π-bonds reactivity

  • 70 Accesses

Abstract

The chemistry of heteroatom analogues of cyclopropane derivatives has been receiving considerable interest because of their unexpected reactivities. Herein, the density functional theory (DFT) method was applied to understand reactivity and selectivity of sigma (σ) and pi (π) bonds in methyl and aryl (2,4,6-iPr3C6H2)-substituted cyclotrisilenes, as silicon analogue of cyclopropane, for the reaction with nitrous oxide. The DFT calculations at the APFD/def2-TZVPP level of theory show that three types of isomers with Si3O subunit can be considered as potential products for methylated system. The further DFT calculations on the proposed reactions favor the π-bond reactivity of the methyl-substituted cyclotrisilene to yield a structure that adopted the cyclic planar-trans geometry with the lower energy barrier and considerably high exergonic nature. Moreover, π-bond reactivity of the cyclotrisilene with aryl group promotes the formation of the folded isomer of the planar-trans structure with only 0.3 kcal mol−1 energy gap at the B3LYP-D3/6-31G(d,p) level of theory. The theoretical results provide a crucial guide for the reaction to be tackled experimentally.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Lee VY (2017) Organosilicon compounds theory and experiment (synthesis). Academic Press, New York

  2. 2.

    Iwamoto R, Kabuto C, Kira M (1999) J Am Chem Soc 121:886–887

  3. 3.

    Iwamoto T, Tamura M, Kabuto C, Kira M (2000) Science 290:504–506

  4. 4.

    Ichinohe M, Matsuno T, Sekiguchi A (1999) Angew Chem Int Ed 38:2194–2196

  5. 5.

    Uchiyama K, Nagendran S, Ishida S, Iwamoto T, Kira M (2007) J Am Chem Soc 129:10638–10639

  6. 6.

    Lee VY, Yasuda H, Sekiguchi A (2007) J Am Chem Soc 129:2436–2437

  7. 7.

    Leszczynska K, Abersfelder K, Mix A, Neumann B, Stammler HG, Cowley MJ, Jutzi P, Scheschkewitz D (2012) Angew Chem Int Ed 51:6785–6788

  8. 8.

    Tsurusaki A, Kamiyama J, Kyushin S (2014) J Am Chem Soc 136:12896–12898

  9. 9.

    Cowley MJ, Ohmori Y, Huch V, Ichinohe M, Sekiguchi A, Scheschkewitz D (2013) Angew Chem Int Ed 52:13247–13250

  10. 10.

    Ohmori Y, Ichinohe M, Sekiguchi A, Cowley MJ, Huch V, Scheschkewitz D (2013) Organomet 32:1591–1594

  11. 11.

    Lee VY, Gapurenko OA, Miyazaki S, Sekiguchi A, Minyaev RM, Minkin VI, Gornitzka H (2015) Angew Chem Int Ed 54:14118–14122

  12. 12.

    Zhao H, Leszczynska K, Klemmer L, Huch V, Zimmer M, Scheschkewitz D (2018) Angew Chem Int Ed 57:2445–2449

  13. 13.

    Lee VY, Miyazaki S, Yasuda H, Sekiguchi A (2008) J Am Chem Soc 130:2758–2759

  14. 14.

    Zhao H, Klemmer L, Cowley MJ, Majumdar M, Huch V, Zimmer M, Scheschkewitz D (2018) Chem Commun 54:8399–8402

  15. 15.

    Zhao H, Klemmer L, Cowley MJ, Huch V, Zimmer M, Scheschkewitz D (2018) Z Anorg Allg Chem 644:999–1005

  16. 16.

    Iwamoto T, Tamura M, Kabuto C, Kira M (2003) Organomet 22:2342–2344

  17. 17.

    Yokelson HB, Millevolte AJ, Gillette GR, West R (1987) J Am Chem Soc 109:6865–6866

  18. 18.

    Maity B, Koley D (2014) J Mol Graph Model 51:50–63

  19. 19.

    Maity B, Koley D (2017) J Phys Chem A 121:401–417

  20. 20.

    Khan S, Michel R, Koley D, Roesky HW, Stalke D (2011) Inorg Chem 50:10878–10883

  21. 21.

    Yildiz CB (2018) J Mol Model 24:18

  22. 22.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, KleneM Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewsk VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pittsburgh PA, Pople JA (2016) Gaussian 16, revision B01. Gaussian Inc, Wallingford

  23. 23.

    Austin A, Petersson G, Frisch MJ, Dobek FJ, Scalmani G, Throssell K (2012) J Chem Theory Comput 8:4989–5007

  24. 24.

    Weigend F (2006) Phys Chem Chem Phys 8:1057–1065

  25. 25.

    Noodleman L (1981) J Chem Phys 74:5737–5743

  26. 26.

    Noodleman L, Baerends EJ (1984) J Am Chem Soc 106:2316–2327

  27. 27.

    PvR Schleyer, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaeffer HFIII (1998) The encyclopedia of computational chemistry. Wiley, Chichester

  28. 28.

    Kikuchi A, Ito H, Abe J (2005) J Phys Chem B 109:19448–19453

  29. 29.

    Borden WT, Davidson ER (1996) Acc Chem Res 29:67–75

  30. 30.

    Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740

  31. 31.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

  32. 32.

    Glendening ED, Reed AE, Carpenter JE, Weinhold F (2003) NBO Version 3.1

  33. 33.

    Becke AD (1993) J Chem Phys 98:5648–5652

  34. 34.

    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785–789

  35. 35.

    Nieder D, Klemmer L, Kaiser Y, Huch V, Scheschkewitz D (2018) Organomet 37:632–635

  36. 36.

    Wang H, Zhang J, Xie J (2018) J Organomet Chem 865:173–177

  37. 37.

    Gonzalez C, Schlegel HB (1991) J Chem Phys 95:5853–5860

  38. 38.

    Wiberg KB (1968) Tetrahedron 24:1083–1096

  39. 39.

    Dennington RII, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2009) GaussView v.5.0.9 visualizer and builder. Gaussian Inc, Wallingford

  40. 40.

    Padwa A (1984) 1,3-dipolar cycloaddition chemistry. Wiley, New York

  41. 41.

    Haberhauer G, Gleiter R, Woitschetzki S (2015) J Org Chem 80:12321–12332

  42. 42.

    Siadati SA (2018) Tetrahedron Lett 56:4857–4944

  43. 43.

    Yildiz CB (2018) Comput Theor Chem 1134:47–53

  44. 44.

    Boatz JA, Gordon MS (1989) J Phys Chem 93:2888–2891

  45. 45.

    Kira M (2014) Organomet 33:644–653

  46. 46.

    Wiberg N, Schuster H, Simon A, Peters K (1986) Angew Chem Int Ed 25:79–80

Download references

Acknowledgments

Financial support by the Aksaray University coordinatorship of scientific research projects (Grant No. 2017-036) is gratefully acknowledged. The author wishes to express his thanks to the reviewers for valuable comments that improved the quality of the manuscript.

Author information

Correspondence to Cem Burak Yildiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1080 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yildiz, C.B. A DFT study on the oxidation of cyclotrisilene by nitrous oxide: the σ- and π-bonds reactivity. Theor Chem Acc 139, 18 (2020). https://doi.org/10.1007/s00214-019-2540-0

Download citation

Keywords

  • Small molecule activation
  • Main group species
  • DFT
  • Nitrous oxide
  • Cyclotrisilene