Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adaptive aromaticity in ruthenacycles

  • 62 Accesses

Abstract

Adaptive aromaticity in the lowest singlet and triplet states is a rare property found among molecular systems. So far, only osmapentalene and osmapyridinium have been found to possess the adaptive aromaticity. Although it has been confirmed that the pattern of electron excitation is a key factor to achieve the adaptive aromaticity, further investigation of the metal center effect has not yet been made. Ruthenium, another Group 8 transition metal, can form metallacycles similar to the osmium counterparts. Here, we perform density functional theory calculations for two sets of ruthenacycles and analyze their aromaticity with multiple indices, revealing a 16-valence-electron ruthenapentalene being aromatic in both the singlet ground state (S0) and the lowest triplet state (T1) and extending the adaptive aromaticity to the second-row transition metal complexes.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Faraday M (1825) On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Phil Trans R Soc Lond 115:440–466

  2. 2.

    Schleyer PvR, Jiao H (2009) What is aromaticity? Pure Appl Chem 68:209–218

  3. 3.

    Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem. Z Phys 70:204–286

  4. 4.

    Schleyer PvR (2001) Introduction: aromaticity. Chem Rev 101:1115–1118

  5. 5.

    Mitchell RH (2001) Measuring aromaticity by NMR. Chem Rev 101:1301–1316

  6. 6.

    Bleeke JR (2001) Metallabenzenes. Chem Rev 101:1205–1228

  7. 7.

    Bühl M, Hirsch A (2001) Spherical aromaticity of fullerenes. Chem Rev 101:1153–1184

  8. 8.

    De Proft F, Geerlings P (2001) Conceptual and computational DFT in the study of aromaticity. Chem Rev 101:1451–1464

  9. 9.

    Gomes JANF, Mallion RB (2001) Aromaticity and ring currents. Chem Rev 101:1349–1384

  10. 10.

    Krygowski TM, Cyrański MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385–1420

  11. 11.

    Watson MD, Fechtenkötter A, Müllen K (2001) Big is beautiful − “aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem Rev 101:1267–1300

  12. 12.

    Williams RV (2001) Homoaromaticity. Chem Rev 101:1185–1204

  13. 13.

    Feixas F, Matito E, Poater J, Solà M (2015) Quantifying aromaticity with electron delocalisation measures. Chem Soc Rev 44:6434–6451

  14. 14.

    Ottosson H (2012) Organic photochemistry: exciting excited-state aromaticity. Nat Chem 4:969–971

  15. 15.

    Zimmerman HE (1966) On molecular orbital correlation diagrams, the occurrence of möbius systems in cyclization reactions, and factors controlling ground- and excited-state reactions. I. J Am Chem Soc 88:1564–1565

  16. 16.

    Dewar MJS (1966) A molecular orbital theory of organic chemistry—VIII. Tetrahedron 22:75–92

  17. 17.

    Rosenberg M, Dahlstrand C, Kilså K, Ottosson H (2014) Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. Chem Rev 114:5379–5425

  18. 18.

    Oh J, Sung YM, Hong Y, Kim D (2018) Spectroscopic diagnosis of excited-state aromaticity: capturing electronic structures and conformations upon aromaticity reversal. Acc Chem Res 51:1349–1358

  19. 19.

    Baird NC (1972) Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J Am Chem Soc 94:4941–4948

  20. 20.

    Heilbronner E (1964) Hűckel molecular orbitals of Mőbius-type conformations of annulenes. Tetrahedron Lett 5:1923–1928

  21. 21.

    Aihara J-I (1978) Aromaticity-based theory of pericyclic reactions. Bull Chem Soc Jpn 51:1788–1792

  22. 22.

    Karadakov PB (2008) Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene. J Phys Chem A 112:7303–7309

  23. 23.

    Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M (2011) Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds. Phys Chem Chem Phys 13:20690–20703

  24. 24.

    Chen D, Xie Q, Zhu J (2019) Unconventional aromaticity in organometallics: the power of transition metals. Acc Chem Res 52:1449–1460

  25. 25.

    Grande-Aztatzi R, Mercero JM, Matito E, Frenking G, Ugalde JM (2017) The aromaticity of dicupra[10]annulenes. Phys Chem Chem Phys 19:9669–9675

  26. 26.

    Szczepanik D, Solà M (2019) Electron delocalization in planar metallacycles: Hückel or Möbius aromatic? ChemistryOpen 8:219–227

  27. 27.

    Chen D, Shen T, An K, Zhu J (2018) Adaptive aromaticity in S 0 and T 1 states of pentalene incorporating 16 valence electron osmium. Commun Chem 1:18

  28. 28.

    Shen T, Chen D, Lin L, Zhu J (2019) Dual aromaticity in both the T 0 and S 1 states: osmapyridinium with phosphonium substituents. J Am Chem Soc 141:5720–5727

  29. 29.

    Craig DP, Paddock NL (1958) A novel type of aromaticity. Nature 181:1052–1053

  30. 30.

    Mauksch M, Tsogoeva SB (2016) Reversal of orbital symmetry control in electrocyclic ring closures through craig-möbius aromaticity. ChemPhysChem 17:963–966

  31. 31.

    Zhu C, Li S, Luo M, Zhou X, Niu Y, Lin M, Zhu J, Cao Z, Lu X, Wen T, Xie Z, Schleyer PvR, Xia H (2013) Stabilization of anti-aromatic and strained five-membered rings with a transition metal. Nat Chem 5:698–703

  32. 32.

    Zhu C, Luo M, Zhu Q, Zhu J, Schleyer PvR, Wu JI-C, Lu X, Xia H (2014) Planar Möbius aromatic pentalenes incorporating 16 and 18 valence electron osmiums. Nat Commun 5:3265

  33. 33.

    Liu B, Wang H, Xie H, Zeng B, Chen J, Tao J, Wen TB, Cao Z, Xia H (2009) Osmapyridine and osmapyridinium from a formal [4 + 2] cycloaddition reaction. Angew Chem Int Ed 48:5430–5434

  34. 34.

    Solà M (2017) Why aromaticity is a suspicious concept? Why? Front Chem 5:22

  35. 35.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09. Revision E.01, Gaussian. Inc., Wallingford CT

  36. 36.

    Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

  37. 37.

    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

  38. 38.

    Herges R, Geuenich D (2001) Delocalization of electrons in molecules. J Phys Chem A 105:3214–3220

  39. 39.

    Geuenich D, Hess K, Köhler F, Herges R (2005) Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem Rev 105:3758–3772

  40. 40.

    Friedrich K, Seifert G, Großmann G (1990) Nuclear magnetic shielding in molecules. The application of GIAO’s in LCAO-Xα-calculations. Z Phys D Atom Mol Cl 17:45–46

  41. 41.

    Keith TA, Bader RFW (1993) Topological analysis of magnetically induced molecular current distributions. J Chem Phys 99:3669–3682

  42. 42.

    Swart M (2008) Accurate spin-state energies for iron complexes. J Chem Theor Comput 4:2057–2066

  43. 43.

    Swart M, Gruden M (2016) Spinning around in transition-metal chemistry. Acc Chem Res 49:2690–2697

  44. 44.

    Szczepanik DW, Andrzejak M, Dyduch K, Zak E, Makowski M, Mazur G, Mrozek J (2014) A uniform approach to the description of multicenter bonding. Phys Chem Chem Phys 16:20514–20523

  45. 45.

    Szczepanik DW RunEDDB script. http://www.eddb.pl. Accessed Sept 2019

  46. 46.

    Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34:1429–1437

  47. 47.

    Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Which NICS aromaticity index for planar π rings is best? Org Lett 8:863–866

  48. 48.

    Stanger A (2006) Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J Org Chem 71:883–893

  49. 49.

    Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Comput Sci 33:70–78

  50. 50.

    Foroutan-Nejad C (2015) Is NICS a reliable aromaticity index for transition metal clusters? Theor Chem Acc 134:8

  51. 51.

    Shaik SS, Hiberty PC (1985) When does electronic delocalization become a driving force of molecular shape and stability? 1. The aromatic sextet. J Am Chem Soc 107:3089–3095

  52. 52.

    Hiberty PC, Shaik SS, Ohanessian G, Lefour JM (1986) The π-distortive propensities in benzene and the allyl radical. A reply to a criticism. J Org Chem 51:3908–3909

Download references

Acknowledgements

Financial support by the National Science Foundation of China (21873079 and 21573179) and the Top-Notch Young Talents Program of China is gratefully acknowledged.

Author information

Correspondence to Jun Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10142 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Qiu, R., Dong, S. et al. Adaptive aromaticity in ruthenacycles. Theor Chem Acc 139, 21 (2020). https://doi.org/10.1007/s00214-019-2537-8

Download citation

Keywords

  • Adaptive aromaticity
  • Triplet state
  • Ruthenapentalene
  • Ruthenapyridinium