Modular bonding picture for aromatic borometallic molecular wheels

  • Fu Kit SheongEmail author
  • Jing-Xuan Zhang
  • Zhenyang LinEmail author
Regular Article
Part of the following topical collections:
  1. Chemical Concepts from Theory and Computation


Borometallic molecular wheel is a special class of clusters with a planar ring of boron atoms surrounding a transition metal center, and its distinctive geometry and atypical electronic structure make this class of clusters an interesting target for theoretical analysis. Previous adaptive natural density partitioning analyses have provided a bonding picture for them. In this work, we take a slightly different perspective on their bonding, by considering such clusters as coordination complexes. We find that these clusters can be understood through a simple modular bonding picture, which could be applied to a number of related complexes/clusters.


Aromaticity Bonding model Borometallic molecular wheels Boron clusters Principal interacting orbital analysis 



This work was supported by the Research Grants Council of Hong Kong (HKUST 16305119 and 16304017).

Supplementary material

214_2019_2536_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1295 kb)


  1. 1.
    Wade K (1971) The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J Chem Soc Chem Commun. CrossRefGoogle Scholar
  2. 2.
    Welch AJ (2013) The significance and impact of Wade’s rules. Chem Commun 49:3615. CrossRefGoogle Scholar
  3. 3.
    Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17:311–319. CrossRefGoogle Scholar
  4. 4.
    Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice Hall, Upper Saddle RiverGoogle Scholar
  5. 5.
    Amgoune A, Bourissou D (2010) σ-Acceptor, Z-type ligands for transition metals. Chem Commun 47:859–871. CrossRefGoogle Scholar
  6. 6.
    Romanescu C, Galeev TR, Li W-L et al (2013) Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. Acc Chem Res 46:350–358. CrossRefPubMedGoogle Scholar
  7. 7.
    Li W-L, Chen X, Jian T et al (2017) From planar boron clusters to borophenes and metalloborophenes. Nat Rev Chem 1:0071. CrossRefGoogle Scholar
  8. 8.
    Boldyrev AI, Wang L-S (2016) Beyond organic chemistry: aromaticity in atomic clusters. Phys Chem Chem Phys 18:11589–11605. CrossRefPubMedGoogle Scholar
  9. 9.
    Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217. CrossRefPubMedGoogle Scholar
  10. 10.
    Tkachenko NV, Boldyrev AI (2019) Chemical bonding analysis of excited states using the adaptive natural density partitioning method. Phys Chem Chem Phys 21:9590–9596. CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang J-X, Sheong FK, Lin Z (2018) Unravelling chemical interactions with principal interacting orbital analysis. Chem Eur J 24:9639–9650. CrossRefPubMedGoogle Scholar
  12. 12.
    Frisch MJ, Trucks GW, Schlegel HB et al. Gaussian~09 Revision D.01Google Scholar
  13. 13.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. CrossRefGoogle Scholar
  14. 14.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. CrossRefPubMedGoogle Scholar
  15. 15.
    Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34:1429–1437. CrossRefPubMedGoogle Scholar
  16. 16.
    Luo Q (2008) Boron rings containing planar octa-and enneacoordinate cobalt, iron and nickel metal elements. Sci China Ser B Chem 51:607–613. CrossRefGoogle Scholar
  17. 17.
    Ito K, Pu Z, Li Q-S, von Schleyer P (2008) Cyclic boron clusters enclosing planar hypercoordinate cobalt, iron, and nickel. Inorg Chem 47:10906–10910. CrossRefPubMedGoogle Scholar
  18. 18.
    Romanescu C, Galeev TR, Li W-L et al (2011) Aromatic metal-centered monocyclic boron rings: Co©B8 and Ru©B9 . Angew Chem Int Ed 50:9334–9337. CrossRefGoogle Scholar
  19. 19.
    Li W-L, Romanescu C, Galeev TR et al (2012) Transition-metal-centered nine-membered boron rings: MⓒB9 and MⓒB9 (M = Rh, Ir). J Am Chem Soc 134:165–168. CrossRefPubMedGoogle Scholar
  20. 20.
    Lein M, Frunzke J, Frenking G (2003) A novel class of aromatic compounds: metal-centered planar cations [Fe(Sb5)]+ and [Fe(Bi5)]+. Angew Chem Int Ed 42:1303–1306. CrossRefGoogle Scholar
  21. 21.
    Zhai H-J, Alexandrova AN, Birch KA et al (2003) Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed 42:6004–6008. CrossRefGoogle Scholar
  22. 22.
    Jian T, Li W-L, Chen X et al (2016) Competition between drum and quasi-planar structures in RhB18 : motifs for metallo-boronanotubes and metallo-borophenes. Chem Sci 7:7020–7027. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryThe Hong Kong University of Science and TechnologyHong KongChina
  2. 2.Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations