Advertisement

Hypervalent halogen hydrides HalHn (Hal = Cl, Br, I; n = 3, 5, 7): DFT and ab initio stability prediction

  • Alexander A. SikalovEmail author
Regular Article

Abstract

Stability—both kinetic and thermodynamic—and structure of hypervalent halogen hydrides and respective ionic species were investigated using B3LYP, B3PW91 and MPW1PW91 DFT functionals and second-order Møller-Plesset perturbation theory (MP2) with Def2-TZVPPD basis set (for I atoms) and aug-cc-pVTZ basis set (for Br, Cl and H atoms). Various dissociation pathways were considered: respective reaction enthalpies and H2 elimination activation enthalpies were calculated. At these levels of theory, all of the HalHn species (Hal = Cl, Br, I; n = 3, 5, 7) have covalently bound local minima (except for ClH7) and have a relatively significant kinetic stability with respect to H2 elimination, which indicates the possibility of them being, at the very least, spectroscopically observable, if not isolable. The first candidates for isolation/observation appear to be IH3 and IH5. To aid future identification of hypervalent halogen hydrides, harmonic frequencies for these compounds were calculated. Also, NBO analyses were performed and natural electron configurations, Wiberg bond indices and HOMO–LUMO gaps for these species were determined.

Keywords

Quantum chemistry Hypervalent molecules Hydrogen transportation HOMO–LUMO Vibrational spectroscopy Hybridization 

Notes

Acknowledgements

The author would like to thank the National Academy of Sciences of Ukraine for providing Gaussian09 program package and necessary computational resources.

Compliance with ethical standards

Conflict of interest

The author declares no competing financial interests.

Supplementary material

214_2019_2524_MOESM1_ESM.docx (686 kb)
Supplementary material 1 (DOCX 686 kb)

References

  1. 1.
    Musher JI (1969) The chemistry of hypervalent molecules. Angew Chem Int Ed Engl 8:54–68.  https://doi.org/10.1002/anie.196900541 CrossRefGoogle Scholar
  2. 2.
    Reed AE, Schleyer PVR (1988) The anomeric effect with central atoms other than carbon. 2. Strong interactions between nonbonded substituents in mono- and polyfluorinated first- and second-row amines, FnAHmNH2. Inorg Chem 27:3969–3987.  https://doi.org/10.1021/ic00295a018 CrossRefGoogle Scholar
  3. 3.
    Pu Z, Li Q, Xie Y, Schaefer HF (2009) Hypervalent molecules, sulfuranes, and persulfuranes: review and studies related to the recent synthesis of the first persulfurane with all substituents carbon-linked. Theor Chem Acc 124:151–159.  https://doi.org/10.1007/s00214-009-0621-1 CrossRefGoogle Scholar
  4. 4.
    Yoshioka Y, Goddard JD, Schaefer HF (1981) Analytic configuration interaction gradient studies of SH4, sulfurane. J Chem Phys 74:1855–1863.  https://doi.org/10.1063/1.441275 CrossRefGoogle Scholar
  5. 5.
    Moc J, Dorigo AE, Morokuma K (1993) Transition structures for H2 elimination from XH4 hypervalent species (X = S, Se and Te). Ab initio MO study. Chem Phys Lett 204:65–72.  https://doi.org/10.1016/0009-2614(93)85606-O CrossRefGoogle Scholar
  6. 6.
    Wittkopp A, Prall M, Schreiner PR, Schaefer HF (2000) Is SH4, the simplest 10-S-4 sulfurane, observable? Phys Chem Chem Phys 2:2239–2244.  https://doi.org/10.1039/B000597P CrossRefGoogle Scholar
  7. 7.
    Schwenzer GM, Schaefer HF (1975) Hypervalent molecules sulfurane (SH4) and persulfurane (SH6). J Am Chem Soc 97:1393–1397.  https://doi.org/10.1021/ja00839a019 CrossRefGoogle Scholar
  8. 8.
    Hinze J, Friedrich O, Sundermann A (1999) A study of some unusual hydrides: BeH2, BeH6 + and SH6. Mol Phys 96:711–718.  https://doi.org/10.1080/00268979909483007 CrossRefGoogle Scholar
  9. 9.
    Rauk A, Allen LC, Mislow K (1972) Electronic structure of PH5 and intramolecular ligand exchange in phosphoranes. Model studies. J Am Chem Soc 94:3035–3040.  https://doi.org/10.1021/ja00764a026 CrossRefGoogle Scholar
  10. 10.
    Kutzelnigg W, Wasilewski J (1982) Theoretical study of the reaction phosphorane. fwdarw. phosphine + hydrogen. J Am Chem Soc 104:953–960.  https://doi.org/10.1021/ja00368a005 CrossRefGoogle Scholar
  11. 11.
    Wasada H, Hirao K (1992) Theoretical study of the reactions of pentacoordinated trigonal bipyramidal phosphorus compounds: PH5, PF5, PF4H, PF3H2, PF4CH3, PF3(CH3)2, P(O2C2H4)H3, P(OC3H6)H3, and PO5H4−. J Am Chem Soc 114:16–27.  https://doi.org/10.1021/ja00027a002 CrossRefGoogle Scholar
  12. 12.
    Kolandaivel P, Kumaresan R (1995) The reaction path of PH5 → PH3 + H2 using an SCF study. J Mol Struct 337:225–229.  https://doi.org/10.1016/0166-1280(94)04103-Y CrossRefGoogle Scholar
  13. 13.
    Moc J, Morokuma K (1995) Ab initio molecular orbital study on the periodic trends in structures and energies of hypervalent compounds: five-coordinated XH5 species containing a group 5 central atom (X = P, As, Sb, and Bi). J Am Chem Soc 117:11790–11797.  https://doi.org/10.1021/ja00152a022 CrossRefGoogle Scholar
  14. 14.
    Tian W, Miao Q, Li Q, Li W, Cheng J (2013) Superalkali Li3M (M = Cl, Br, I) as a Lewis base in halogen bonding: a heavier halogen is a stronger Lewis base than a lighter halogen. Comput Theor Chem 1012:41–46.  https://doi.org/10.1016/j.comptc.2013.03.002 CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc, Wallingford, CTGoogle Scholar
  16. 16.
    Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023.  https://doi.org/10.1063/1.456153 CrossRefGoogle Scholar
  17. 17.
    Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371.  https://doi.org/10.1063/1.464303 CrossRefGoogle Scholar
  18. 18.
    Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110:7667–7676.  https://doi.org/10.1063/1.478678 CrossRefGoogle Scholar
  19. 19.
    Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105–134115.  https://doi.org/10.1063/1.3484283 CrossRefPubMedGoogle Scholar
  20. 20.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622.  https://doi.org/10.1103/PhysRev.46.618 CrossRefGoogle Scholar
  21. 21.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  22. 22.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  23. 23.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627.  https://doi.org/10.1021/j100096a001 CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539.  https://doi.org/10.1103/PhysRevB.54.16533 CrossRefGoogle Scholar
  25. 25.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–668.  https://doi.org/10.1063/1.475428 CrossRefGoogle Scholar
  26. 26.
    Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199.  https://doi.org/10.1063/1.1725697 CrossRefGoogle Scholar
  27. 27.
    Durrant MC (2015) A quantitative definition of hypervalency. Chem Sci 6:6614–6623.  https://doi.org/10.1039/C5SC02076J CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci USA 83:8440–8441.  https://doi.org/10.1073/pnas.83.22.8440 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.KievUkraine

Personalised recommendations