Advertisement

Mechanism analysis of transient ligand-induced β-C–H arylation of α-methyl pentanone

  • 32 Accesses

Abstract

Based on a comprehensive DFT mechanism study, the reaction characteristics of β-C–H arylation of α-methyl pentanone with iodobenzene are revealed. In this reaction, glycine plays an important role as organic transient ligand, which can directly activate β-C–H of α-methyl pentanone together with metal Pd(II). And in the whole reaction, the formation of N=C bond during the condensation of pentanone and glycine and the breaking of N=C bond are two rate-determining steps. The energy barrier of TS4 and TS23 is 57.5 kcal/mol and 41.9 kcal/mol, respectively, which is higher than other transition states. Correspondingly, metal Pd(II) still is a wonderful catalyst in this reaction, which can flexibly coordinate with nonmetal atom (N, O, C) and form different inorganic metal intermediates. And these inorganic metal intermediates have significant function in further decreasing reaction energy barrier and inducing the formation of β-C–H arylation.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Raub S, Jansen G (2001) A quantitative measure of bond polarity from the electron localization function and the theory of atoms in molecules. Theor Chem Acc 106:223–232

  2. 2.

    Berski S, Durlak P (2016) The mechanism of Claisen rearrangement of allyl phenyl ether from the perspective of topological analysis of the ELF. New J Chem 40:8717–8726

  3. 3.

    Pérez P, Domingo LR (2015) A DFT study of inter- and intramolecular Aryne Ene reactions. Eur J Org Chem 2015:2826–2834

  4. 4.

    Domingo LR, Ríos-Gutiérrez M, Chamorro E, Pérez P (2016) Aromaticity in pericyclic transition state structures a critical rationalization based on the topological analysis of electron density. Chem Sel 1(18):6026–6039

  5. 5.

    Arroniz C, Denis JG, Ironmonger A, Rassias G, Larrosa I (2014) An organic cation as a silver(I) analogue for the arylation of sp 2 and sp 3 C–H bonds with iodoarenes. Chem Sci 5:3509–3514

  6. 6.

    Weibel JM, Blanc A, Pale P (2008) Ag-mediated reactions: coupling and heterocyclization reactions. Chem Rev 108:3149–3173

  7. 7.

    Xu Y, Young MC, Wang C-P, Magness DM, Dong GB (2016) Catalytic C(sp 3)–H arylation of free primary amines with an exo directing group generated in situ. Angew Chem Int Ed Engl 55:9084–9087

  8. 8.

    Dydio P, Reek JNH (2014) Supramolecular control of selectivity in transition metal catalysis through substrate preorganization. Chem Sci 5:2135–2145

  9. 9.

    Mo F, Dong G (2014) Regioselective ketone α-alkylation with simple olefins via dual activation. Science 345:68–72

  10. 10.

    Li S, Chen G, Feng CG, Gong W, Yu JQ (2014) Ligand-enabled γ-C–H olefination and carbonylation: construction of β-quaternary carbon centers. J Am Chem Soc 136:5267–5270

  11. 11.

    Zhang FL, Hong K, Li TJ, Park H, Yu JQ (2016) Functionalization of C(sp 3)–H bonds using a transient directing group. Science 351:252–256

  12. 12.

    Xiao KJ, Lin DW, Miura M et al (2014) Palladium (II)-catalyzed enantioselective C(sp 3)–H activation using a chiral hydroxamic acid ligand. J Am Chem Soc 136:8138–8142

  13. 13.

    Li S-H, Zhu R-Y, Xiao K-J, Yu J-Q (2016) Ligand-enabled arylation of γ-C–H bonds. Angew Chem Int Ed 55:4317–4321

  14. 14.

    Chan KS, Wasa M, Chu L, Laforteza BN, Miura M, Yu J-Q (2014) Ligand-enabled cross-coupling of C(sp 3)–H bonds with arylboron reagents via Pd(II)/Pd(0) catalysis. Nat Chem 6:146–150

  15. 15.

    Chan KS, Fu HY, Yu J-Q (2015) Palladium(II)-catalyzed highly enantioselective C–H arylation of cyclo-propylmethylamines. J Am Chem Soc 137:2042–2046

  16. 16.

    Wu YW, Chen YQ, Liu T, Eastgate MD, Yu J-Q (2016) Pd-catalyzed γ-C(sp 3)–H arylation of free amines using a transient directing group. J Am Chem Soc 138:14554–14557

  17. 17.

    Chu L, Xiao K-J, Yu J-Q (2014) Room-tempeature enantioselective C–H iodination via kinetic resolution. Science 346:451–455

  18. 18.

    Dang YF, Qu SL, Tao Y, Deng X, Wang ZX (2015) Mechanistic insight into ketone α-alkylation with unactivated Olefins via C–H activation promoted by metal–organic cooperative catalysis (MOCC): enriching the MOCC chemistry. J Am Chem Soc 137:6279–6291

  19. 19.

    Yang K, Li Q, Liu YB, Li GG, Ge HB (2016) Catalytic C–H arylation of aliphatic aldehydes enabled by a transient ligand. J Am Chem Soc 138:12775–12778

  20. 20.

    Liu Y-B, Ge H-B (2017) Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group. Nat Chem 9:26–32

  21. 21.

    Frisch MJ et al (2009) Gaussian 09, Revision E.01. Gaussian Inc., Wallingford

  22. 22.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

  23. 23.

    Martin F, Zipse H (2005) Charge distribution in the water molecule—a comparison of methods. J Comput Chem 26:97–105

  24. 24.

    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

  25. 25.

    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

Download references

Acknowledgements

This project was supported by the Science Foundation of Shaan’xi Province (No. 2018JM2033), Shaan’xi Provincial Education Department Project (No. 18JK0836), Undergraduate Training Programs for Innovation (No. 201828004) and the Teaching Reform Project (No. 2017Y007).

Author information

Correspondence to Caihua Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Yang, T. & Fan, G. Mechanism analysis of transient ligand-induced β-C–H arylation of α-methyl pentanone. Theor Chem Acc 139, 10 (2020). https://doi.org/10.1007/s00214-019-2523-1

Download citation

Keywords

  • Transient ligand
  • Density functional theory
  • Reaction mechanism
  • β-C–H arylation