Advertisement

Protein polarization effects in the thermodynamic computation of vibrational Stark shifts

  • Alissa M. Richard
  • José A. GascónEmail author
Regular Article
  • 58 Downloads

Abstract

Vibrational Stark effect (VSE) spectroscopy provides a direct measure of electrostatic fields within proteins. VSE also provides a unique way, still underutilized, to test the accuracy of electrostatic interactions in realistic finite-temperature simulations. Here, we quantify the electrostatic contributions of residues surrounding the catalytic reaction center in ketosteroid isomerase. Our goal is to understand how inter-residue charge transfer and local and non-local polarization affect the electric field at a molecular probe inside the protein. In particular, we show that polarization effects and charge transfer are essential to capture the correct thermodynamic structural average, which in turn affects the Stark shift.

Keywords

QM/MM Vibrational Stark effect Polarization effects 

Notes

Acknowledgements

This work was partially supported by a grant from the National Science Foundation (CHE-1404998).

Supplementary material

214_2019_2522_MOESM1_ESM.docx (194 kb)
Supplementary material 1 (DOCX 194 kb)

References

  1. 1.
    Benkovic SJ, Hammes-Schiffer S (2003) Science 301:1196–1202CrossRefGoogle Scholar
  2. 2.
    Hong H, Szabo G, Tamm LK (2006) Nat Chem Biol 2:627–635CrossRefGoogle Scholar
  3. 3.
    Shaik S, Ramanan R, Danovich D, Mandal D (2018) Chem Soc Rev 47:5125–5145CrossRefGoogle Scholar
  4. 4.
    Shaik S, Mandal D, Ramanan R (2016) Nat Chem 8:1091CrossRefGoogle Scholar
  5. 5.
    Lai W, Chen H, Cho K-B, Shaik S (2010) J Phys Chem Lett 1:2082–2087CrossRefGoogle Scholar
  6. 6.
    Shaik S, de Visser SP, Kumar D (2004) J Am Chem Soc 126:11746–11749CrossRefGoogle Scholar
  7. 7.
    Fried SD, Bagchi S, Boxer SG (2014) Science 346:1510–1514CrossRefGoogle Scholar
  8. 8.
    Park ES, Andrews SS, Hu RB, Boxer SG (1999) J Phys Chem B 103:9813–9817CrossRefGoogle Scholar
  9. 9.
    Plattner N, Meuwly M (2008) Biophys J 94:2505–2515CrossRefGoogle Scholar
  10. 10.
    Wang X, Zhang JZH, He X (2017) Chin J Chem Phys 30:705–716CrossRefGoogle Scholar
  11. 11.
    Wang X, He X, Zhang JZH (2013) J Phys Chem A 117:6015–6023CrossRefGoogle Scholar
  12. 12.
    Wang X, Zhang JZH, He X (2015) J Chem Phys 143:184111–184121CrossRefGoogle Scholar
  13. 13.
    Webb LJ, Boxer SG (2008) Biochemistry 47:1588–1598CrossRefGoogle Scholar
  14. 14.
    Xu L, Cohen AE, Boxer SG (2011) Biochemistry 50:8311–8322CrossRefGoogle Scholar
  15. 15.
    Sandberg DJ, Rudnitskaya AN, Gascón JA (2012) J Chem Theor Comput 8:2817–2823CrossRefGoogle Scholar
  16. 16.
    Muzet N, Guillot B, Jelsch C, Howard E, Lecomte C (2003) Proc Natl Acad Sci 100:8742CrossRefGoogle Scholar
  17. 17.
    Fournier B, Bendeif E-E, Guillot B, Podjarny A, Lecomte C, Jelsch C (2009) J Am Chem Soc 131:10929–10941CrossRefGoogle Scholar
  18. 18.
    Fried SD, Boxer SG (2015) Acc Chem Res 48:998–1006CrossRefGoogle Scholar
  19. 19.
    Wang X, He X (2018) Molecules 23:2410–2425CrossRefGoogle Scholar
  20. 20.
    Wu Y, Boxer SG (2016) J Am Chem Soc 138:11890–11895CrossRefGoogle Scholar
  21. 21.
    Matta CF (2014) J Comput Chem 35:1165–1198CrossRefGoogle Scholar
  22. 22.
    Fried SD, Bagchi S, Boxer SG (2013) J Am Chem Soc 135:11181–11192CrossRefGoogle Scholar
  23. 23.
    Saggu M, Levinson NM, Boxer SG (2011) J Am Chem Soc 133:17414–17419CrossRefGoogle Scholar
  24. 24.
    Suydam IT, Snow CD, Pande VS, Boxer SG (2006) Science 313:200–204CrossRefGoogle Scholar
  25. 25.
    Wang L, Fried SD, Boxer SG (2014) Proc Natl Acad Sci 111:18454–18459CrossRefGoogle Scholar
  26. 26.
    Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA (2018) Chem Rev 118:4071–4113CrossRefGoogle Scholar
  27. 27.
    Matta CF, Huang L, Massa L (2012) Future Med Chem 4:1873–1875CrossRefGoogle Scholar
  28. 28.
    Sowlati-Hashjin S, Matta CF (2014) J Chem Phys 141:039902CrossRefGoogle Scholar
  29. 29.
    Sowlati-Hashjin S, Matta CF (2013) J Chem Phys 139:144101CrossRefGoogle Scholar
  30. 30.
    Askerka M, Ho J, Batista ER, Gascón JA, Batista VS (2016) Methods Enzymol 577:443–481CrossRefGoogle Scholar
  31. 31.
    Gascón JA, Leung SSF, Batista ER, Batista VS (2006) J Chem Theor Comput 2:175–186CrossRefGoogle Scholar
  32. 32.
    Menikarachchi LC, Gascón JA (2008) J Mol Model 14:1–9CrossRefGoogle Scholar
  33. 33.
    Menikarachchi LC, Gascón JA (2011) J Mol Graph Model 30:38–45CrossRefGoogle Scholar
  34. 34.
    Wang X, Liu J, Zhang JZH, He X (2013) J Phys Chem A 117:7149–7161CrossRefGoogle Scholar
  35. 35.
    He X, Zhu T, Wang X, Liu J, Zhang JZH (2014) Acc Chem Res 47:2748–2757CrossRefGoogle Scholar
  36. 36.
    Schrodinger LLC (2016) Maestro 2016Google Scholar
  37. 37.
    Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theor Comput 7:525–537CrossRefGoogle Scholar
  38. 38.
    Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) J Comput Aid Mold Des 27:221–234CrossRefGoogle Scholar
  39. 39.
    Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21:1442–1457CrossRefGoogle Scholar
  40. 40.
    Schrodinger LLC (2016) Qsite 6.1Google Scholar
  41. 41.
    Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) J Chem Theor Comput 12:281–296CrossRefGoogle Scholar
  42. 42.
    Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE, Presented at the SC ‘06: proceedings of the 2006 ACM/IEEE conference on supercomputing, 2006 (unpublished)Google Scholar
  43. 43.
    Grossfield A, Zuckerman DM (2009) Annu Rep Comput Chem 5:23–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ConnecticutStorrsUSA

Personalised recommendations