Advertisement

Atomic effective potentials for starting molecular electronic structure calculations

  • Dimitri N. Laikov
  • Ksenia R. BrilingEmail author
Regular Article
  • 57 Downloads

Abstract

Atomic effective one-electron potentials in a compact analytic form in terms of a few Gaussian charge distributions are developed, for hydrogen through nobelium, for starting molecular electronic structure calculations by a simple diagonalization. For each element, all terms but one are optimized in an isolated-atom Hartree–Fock calculation, and the last one is parametrized on a set of molecules. This one-parameter-per-atom model gives a good starting guess for typical molecules and may be of interest even on its own.

Keywords

Effective-potential model Initial guess Molecular electronic structure 

Notes

Supplementary material

214_2019_2521_MOESM1_ESM.txt (1 kb)
File format description (readme.txt) (txt 2 KB)
214_2019_2521_MOESM2_ESM.txt (25 kb)
atomic parameters based on Hartree--Fock (ac.txt) (txt 25 KB)
214_2019_2521_MOESM3_ESM.txt (20 kb)
Hartree--Fock--Slater (ac0.txt) theory (txt 21 KB)
214_2019_2521_MOESM4_ESM.txt (169 kb)
error measures for all molecules (fm.txt) (txt 170 KB)

References

  1. 1.
    Hoffmann R (1963) J Chem Phys 39:1397.  https://doi.org/10.1063/1.1734456 CrossRefGoogle Scholar
  2. 2.
    King HF, Stanton RE, Kim H, Wyatt RE, Parr RG (1967) J Chem Phys 47:1936.  https://doi.org/10.1063/1.1712221 CrossRefGoogle Scholar
  3. 3.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347.  https://doi.org/10.1002/jcc.540141112 CrossRefGoogle Scholar
  4. 4.
    Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y, Tatewaki H (1984) Gaussian basis sets for molecular calculations, vol 16. Physical sciences data. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Sharp RT, Horton GK (1953) Phys Rev 90:317.  https://doi.org/10.1103/physrev.90.317 CrossRefGoogle Scholar
  6. 6.
    Talman JD, Shadwick WF (1976) Phys Rev A 14:36.  https://doi.org/10.1103/physreva.14.36 CrossRefGoogle Scholar
  7. 7.
    Maldonado P, Sarsa A, Buendía E, Gálvez F (2011) Atom Data Nucl Data 97:109.  https://doi.org/10.1016/j.adt.2010.10.002 CrossRefGoogle Scholar
  8. 8.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133.  https://doi.org/10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Becke AD (1988) J Chem Phys 88:2547.  https://doi.org/10.1063/1.454033 CrossRefGoogle Scholar
  11. 11.
    Laqua H, Kussmann J, Ochsenfeld C (2018) J Chem Phys 149:204111.  https://doi.org/10.1063/1.5049435 CrossRefPubMedGoogle Scholar
  12. 12.
  13. 13.
    Van Lenthe JH, Zwaans R, Van Dam HJJ, Guest MF (2006) J Comput Chem 27:926.  https://doi.org/10.1002/jcc.20393 CrossRefPubMedGoogle Scholar
  14. 14.
    Amat L, Carbó-Dorca R (2001) Int J Quantum Chem 87:59.  https://doi.org/10.1002/qua.10068 CrossRefGoogle Scholar
  15. 15.
    Sambe H, Felton RH (1975) J Chem Phys 62:1122.  https://doi.org/10.1063/1.430555 CrossRefGoogle Scholar
  16. 16.
    Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:3396.  https://doi.org/10.1063/1.438728 CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Dunlap BI (1986) J Phys Chem 90:5524.  https://doi.org/10.1021/j100280a010 CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Nazari F, Whitten JL (2017) J Chem Phys 146:194109.  https://doi.org/10.1063/1.4983395 CrossRefPubMedGoogle Scholar
  21. 21.
    Whitten JL (2019) J Chem Phys 150:034107.  https://doi.org/10.1063/1.5064781 CrossRefPubMedGoogle Scholar
  22. 22.
    Whitten JL (2019) Phys Chem Chem Phys 21:21541.  https://doi.org/10.1039/c9cp02450f CrossRefPubMedGoogle Scholar
  23. 23.
    Boys SF (1950) Proc R Soc A 200:542.  https://doi.org/10.1098/rspa.1950.0036 CrossRefGoogle Scholar
  24. 24.
    Laikov DN (2019) Theor Chem Acc 138:40.  https://doi.org/10.1007/s00214-019-2432-3 CrossRefGoogle Scholar
  25. 25.
    Dyall KG (1994) J Chem Phys 100:2118.  https://doi.org/10.1063/1.466508 CrossRefGoogle Scholar
  26. 26.
    Visscher L, Dyall KG (1997) Atom Data Nucl Data 67:207.  https://doi.org/10.1006/adnd.1997.0751 CrossRefGoogle Scholar
  27. 27.
    Laikov DN (2019) J Chem Phys 150:061103.  https://doi.org/10.1063/1.5082231 CrossRefPubMedGoogle Scholar
  28. 28.
    Kahn LR, Baybutt P, Truhlar DG (1976) J Chem Phys 65:3826.  https://doi.org/10.1063/1.432900 CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865.  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefPubMedGoogle Scholar
  30. 30.
    Laikov DN (2005) Chem Phys Lett 416:116.  https://doi.org/10.1016/j.cplett.2005.09.046 CrossRefGoogle Scholar
  31. 31.
    Laikov DN (2011) J Chem Phys 135:134120.  https://doi.org/10.1063/1.3646498 CrossRefPubMedGoogle Scholar
  32. 32.
    McMurchie LE, Davidson ER (1978) J Comput Phys 26:218.  https://doi.org/10.1016/0021-9991(78)90092-x CrossRefGoogle Scholar
  33. 33.
    Havriliak S, King HF (1983) J Am Chem Soc 105:4.  https://doi.org/10.1021/ja00339a002 CrossRefGoogle Scholar
  34. 34.
    Wolinski K, Pulay P (2003) J Chem Phys 118:9497.  https://doi.org/10.1063/1.1562606 CrossRefGoogle Scholar
  35. 35.
    Deng J, Gilbert ATB, Gill PMW (2009) J Chem Phys 130:231101.  https://doi.org/10.1063/1.3152864 CrossRefPubMedGoogle Scholar
  36. 36.
    Deng J, Gilbert ATB, Gill PMW (2010) J Chem Phys 133:044116.  https://doi.org/10.1063/1.3463800 CrossRefPubMedGoogle Scholar
  37. 37.
    Martin J, Baker J, Pulay P (2009) J Comput Chem 30:881.  https://doi.org/10.1002/jcc.21106 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Chemistry DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations