DFT/TDDFT investigation on the D–π–A type molecule probes 4-(5-R-thiophen-2-yl)-2-isobutyl-2H-[1,2,3]triazolo[4,5-e][1,2,4] triazolo[1,5-a]pyrimidines: fluorescence sensing mechanism and roles of weak interactions

  • Yinhua Ma
  • Liqiang Feng
  • Jianyong Liu
  • Yanqiang Yang
  • Tianshu ChuEmail author
Regular Article


We performed DFT/TDDFT investigation on the sensing mechanism of the D–π–A type fluorescence probes 4-(5-R-thiophen-2-yl)-2-isobutyl-2H-[1,2,3]triazolo[4,5-e][1,2,4] triazolo[1,5-a]pyrimidines (ITTP1, ITTP2, ITTP3), which are designed for detecting 2,4,6-trinitrophenol (TNP) explosive. Theoretical calculations reveal that the fluorescence sensing mechanism was induced by the combination of the π–π stacking interaction and photo-induced electron transfer. The blueshift in the UV–Vis spectrum of the ITTP sensors was correlated with the decrease in electron-donating ability of the molecule probes and was further evidenced by the calculated 1H NMR spectra and DCT index. The roles of the weak interactions: π–π stacking and hydrogen-bonding interaction for the probes fluorescence sensing process were analyzed, and the π–π stacking interaction was verified to be the dominant for the fluorescence sensing. The present finding should be useful for the future design of explosive fluorescent probes and the interpretation of the sensing mechanisms.


Explosive fluorescent probes π–π stacking Hydrogen-bonding interaction Photo-induced electron transfer (PET) Time-dependent density functional theory (TDDFT) method 



This work was supported by the Science Challenging Program (JCKY2016212A501), the National Natural Science Foundation of China (Grant No. 21273234) and the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP, CAS (SKLMRD-K201817).

Supplementary material

214_2019_2520_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1400 kb)


  1. 1.
    Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112(1–2):1–15. CrossRefPubMedGoogle Scholar
  2. 2.
    Sabatini J, Oyler K (2015) Recent advances in the synthesis of high explosive materials. Crystals 6(1):5. CrossRefGoogle Scholar
  3. 3.
    Salinas Y, Martinez-Manez R, Marcos MD, Sancenon F, Costero AM, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41(3):1261–1296. CrossRefPubMedGoogle Scholar
  4. 4.
    Reddy KL, Kumar AM, Dhir A, Krishnan V (2016) Selective and sensitive fluorescent detection of picric acid by new pyrene and anthracene based copper complexes. J Fluoresc 26(6):2041–2046. CrossRefPubMedGoogle Scholar
  5. 5.
    Chakravarty S, Gogoi B, Sen Sarma N (2015) Fluorescent probes for detection of picric acid explosive: a greener approach. J Lumin 165:6–14. CrossRefGoogle Scholar
  6. 6.
    Chowdhury A, Mukherjee PS (2015) Electron-rich triphenylamine-based sensors for picric acid detection. J Org Chem 80(8):4064–4075. CrossRefPubMedGoogle Scholar
  7. 7.
    Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X (2017) One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem 89(5):3001–3008. CrossRefPubMedGoogle Scholar
  8. 8.
    Geng TM, Ye SN, Wang Y, Zhu H, Wang X, Liu X (2017) Conjugated microporous polymers-based fluorescein for fluorescence detection of 2,4,6-trinitrophenol. Talanta 165:282–288. CrossRefPubMedGoogle Scholar
  9. 9.
    Pandith A, Kumar A, Lee J-Y, Kim H-S (2015) 9-Anthracenecarboxamide fluorescent probes for selective discrimination of picric acid from mono- and di-nitrophenols in ethanol. Tetrahedron Lett 56(51):7094–7099. CrossRefGoogle Scholar
  10. 10.
    Sun X, Liu Y, Shaw G, Carrier A, Dey S, Zhao J, Lei Y (2015) Fundamental study of electrospun pyrene-polyethersulfone nanofibers using mixed solvents for sensitive and selective explosives detection in aqueous solution. ACS Appl Mater Interfaces 7(24):13189–13197. CrossRefPubMedGoogle Scholar
  11. 11.
    Shankaran DR, Matsumoto K, Toko K, Miura N (2006) Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sens Actuators B 114(1):71–79. CrossRefGoogle Scholar
  12. 12.
    López-López M, García-Ruiz C (2014) Infrared and Raman spectroscopy techniques applied to identification of explosives. TrAC Trends Anal Chem 54:36–44. CrossRefGoogle Scholar
  13. 13.
    Marshall A, Clark A, Jennings R, Ledingham KWD, Sander J, Singhal RP (1992) Laser-induced dissociation, ionization and fragmentation processes in nitroaromatic molecules. Int J Mass Spectrom Ion Process 116:143–156. CrossRefGoogle Scholar
  14. 14.
    Crowson A, Beardah MS (2001) Development of an LC/MS method for the trace analysis of hexamethylenetriperoxidediamine (HMTD). The Analyst 126(10):1689–1693. CrossRefGoogle Scholar
  15. 15.
    Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129(11):984. CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Fu Y-Y, Zhu D-F, Xu J-Q, He Q-G, Cheng J-G (2016) Recent advances in fluorescence sensor for the detection of peroxide explosives. Chin Chem Lett 27(8):1429–1436. CrossRefGoogle Scholar
  17. 17.
    Nagendran S, Vishnoi P, Murugavel R (2017) Triphenylbenzene sensor for selective detection of picric acid. J Fluoresc. CrossRefPubMedGoogle Scholar
  18. 18.
    Kumari S, Joshi S, Cordova-Sintjago TC, Pant DD, Sakhuja R (2016) Highly sensitive fluorescent imidazolium-based sensors for nanomolar detection of explosive picric acid in aqueous medium. Sens Actuators B Chem 229:599–608. CrossRefGoogle Scholar
  19. 19.
    Duraimurugan K, Balasaravanan R, Siva A (2016) Electron rich triphenylamine derivatives (D-π-D) for selective sensing of picric acid in aqueous media. Sens Actuators B Chem 231:302–312. CrossRefGoogle Scholar
  20. 20.
    Lu L, Wang J, Wu W-P, Ma A, Liu J-Q, Yadav R, Kumar A (2017) Fluorescent sensing of nitroaromatics by two coordination polymers having potential active sites. J Lumin 186:40–47. CrossRefGoogle Scholar
  21. 21.
    Sodkhomkhum R, Masik M, Watchasit S, Suksai C, Boonmak J, Youngme S, Wanichacheva N, Ervithayasuporn V (2017) Imidazolylmethylpyrene sensor for dual optical detection of explosive chemical: 2,4,6-trinitrophenol. Sens Actuators B Chem 245:665–673. CrossRefGoogle Scholar
  22. 22.
    Yan J, Ni JC, Zhao JX, Sun LX, Bai FY, Shi Z, Xing YH (2017) The nitro aromatic compounds detection by triazole carboxylic acid and its complex with the fluorescent property. Tetrahcdron 73(18):2682–2689. CrossRefGoogle Scholar
  23. 23.
    Pan J, Tang F, Ding A, Kong L, Yang L, Tao X, Tian Y, Yang J (2015) A small-molecule chemosensor for the selective detection of 2,4,6-trinitrophenol (TNP). RSC Adv 5(1):191–195. CrossRefGoogle Scholar
  24. 24.
    Lee YH, Liu H, Lee JY, Kim SH, Kim SK, Sessler JL, Kim Y, Kim JS (2010) Dipyrenylcalix[4]arene—a fluorescence-based chemosensor for trinitroaromatic explosives. Chemistry 16(20):5895–5901. CrossRefPubMedGoogle Scholar
  25. 25.
    Ahmed M, Hameed S, Ihsan A, Naseer MM (2017) Fluorescent thiazol-substituted pyrazoline nanoparticles for sensitive and highly selective sensing of explosive 2,4,6-trinitrophenol in aqueous medium. Sens Actuators B Chem 248:57–62. CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Chen S, Shi R, Ji J, Wang D, Jin S, Han T, Zhou C, Shu Q (2017) A single molecular fluorescent probe for selective and sensitive detection of nitroaromatic explosives: a new strategy for the mask-free discrimination of TNT and TNP within same sample. Talanta 166:228–233. CrossRefPubMedGoogle Scholar
  27. 27.
    Verbitskiy EV, Baranova AA, Lugovik KI, Khokhlov KO, Cheprakova EM, Shafikov MZ, Rusinov GL, Chupakhin ON, Charushin VN (2017) New 4,5-di(hetero)arylpyrimidines as sensing elements for detection of nitroaromatic explosives in vapor phase. Dyes Pigments 137:360–371. CrossRefGoogle Scholar
  28. 28.
    Li GY, Liu D, Zhang H, Li WW, Wang F, Liang YH (2015) TDDFT study on the sensing mechanism of a fluorescent sensor for fluoride anion: inhibition of the ESPT process. Spectrochim Acta A Mol Biomol Spectrosc 149:17–22. CrossRefPubMedGoogle Scholar
  29. 29.
    Lou Z, Li P, Han K (2015) Redox-responsive fluorescent probes with different design strategies. Acc Chem Res 48(5):1358–1368. CrossRefPubMedGoogle Scholar
  30. 30.
    Bhat HR, Jha PC (2017) Cyanide anion sensing mechanism of 1,3,5,7-tetratolyl aza-BODIPY: intramolecular charge transfer and partial configuration change. Chem Phys Lett 669:9–16. CrossRefGoogle Scholar
  31. 31.
    Ma Y, Zhao L, Li Y, Liu J, Yang Y, Chu T (2018) Investigation on sensing mechanism of a fluorescent probe for TNP detection in aqueous solution. Tetrahedron 74(21):2684–2691. CrossRefGoogle Scholar
  32. 32.
    Ma Y, Zhao J, Liu J, Yang Y, Chu T (2018) A binding model study on TNP fluorescent sensor 4,40-(9,9-dimethylfluorene-2,7-diyl)dibenzoic acid. J Photochem Photobiol A Chem 367:282–289. CrossRefGoogle Scholar
  33. 33.
    Li Y, Wang A, Bai Y, Wang S (2017) Acriflavine-immobilized eggshell membrane as a new solid-state biosensor for Sudan I–IV detection based on fluorescence resonance energy transfer. Food Chem 237:966–973. CrossRefPubMedGoogle Scholar
  34. 34.
    Baluta S, Malecha K, Sołoduchoa J, Cabaj J (2017) Dopamine sensing with fluorescence strategy based on low temperature co-fired ceramic technology modified with conducting polymers. Sens Actuators B 252:803–812. CrossRefGoogle Scholar
  35. 35.
    Yao S, Qian Y (2017) A naphthalimide–rhodamine two-photon fluorescent turn-on probe for hypochlorous acid by desulfurization-cyclization and fluorescence resonance energy transfer. Sens Actuators B. CrossRefGoogle Scholar
  36. 36.
    Deng X, Huang X, Wu D (2015) Forster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters. Anal Bioanal Chem 407(16):4607–4613. CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang Y, Hu W (2017) Energy donor effect on the sensing performance for a series of FRET-based two-photon fluorescent Hg2+ probes. Materials 10(2):108. CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lin T, Liu X, Lou Z, Hou Y, Teng F (2016) Intermolecular-charge-transfer-induced fluorescence quenching in protic solvent. J Mol Struct 1123:49–54. CrossRefGoogle Scholar
  39. 39.
    Du K, Niu S, Qiao L, Dou Y, Zhu Q, Chen X, Zhang P (2017) A highly selective ratiometric fluorescent probe for the cascade detection of Zn2+ and H2PO4 and its application in living cell imaging. RSC Adv 7:40615–40620. CrossRefGoogle Scholar
  40. 40.
    Hu J, Xia B, Elioff MS (2016) A new terthiophene derivative as a fluorescent sensor for protein detection. J Lumin 173:57–65. CrossRefGoogle Scholar
  41. 41.
    Yang D, Zheng R, Wang Y, Lv J (2016) The ESIPT mechanism of dibenzimidazolo diimine sensor: a detailed TDDFT study. J Phys Org Chem 29(3):161–165. CrossRefGoogle Scholar
  42. 42.
    Yang D, Yang G, Zhao J, Zheng R, Wang Y (2017) A competitive excited state dynamical process for the 2,2′-((1E,1′E)-((3,3′-dimethyl-[1,1′-biphenyl]-4,4′-diyl)-bis(azanylylidene))bis(methanylylidene))-diphenol system. RSC Adv 7(3):1299–1304. CrossRefGoogle Scholar
  43. 43.
    Ma C, Liu Y, Li C, Yang Y (2017) The fluorescence quenching phenomenon in newly synthesized blue fluorescence protein molecule caused by anchoring group substitution: a DFT and TD-DFT study. RSC Adv 7(22):13561–13569. CrossRefGoogle Scholar
  44. 44.
    Basheer SM, Willis AC, Pace RJ, Sreekanth A (2016) Spectroscopic and TD-DFT studies on the turn-off fluorescent chemosensor based on anthraldehyde N(4) cyclohexyl thiosemicarbazone for the selective recognition of fluoride and copper ions. Polyhedron 109:7–18. CrossRefGoogle Scholar
  45. 45.
    Liu K, Zhao X, Liu Q, Huo J, Fu H, Wang Y (2014) Turn on ESPT: novel salicylaldehyde based sensor for biological important fluoride sensing. J Photochem Photobiol B 138:75–79. CrossRefPubMedGoogle Scholar
  46. 46.
    Wu W-R (2015) Theoretical investigation on the excited-state intramolecular proton transfer mechanism of 2-(2′-benzofuryl)-3-hydroxychromone. J Phys Org Chem 28(9):596–601. CrossRefGoogle Scholar
  47. 47.
    Ren G, Meng Q, Zhao J, Chu T (2018) Zwitterions of the excited 4-([2,2′-bipyridine]-4-yl) phenol photoacid molecules: formation and fluorescence. J Mol Liq 264:48–53. CrossRefGoogle Scholar
  48. 48.
    Barman N, Sahu K (2014) Anomalous modulation of photoinduced electron transfer of coumarin 102 in aniline-dimethylaniline mixture: dominant role of hydrogen bonding. Phys Chem Chem Phys 16(48):27096–27103. CrossRefPubMedGoogle Scholar
  49. 49.
    Zhao P, Huang JW, Xu LC, Ma L, Ji LN (2011) The photoinduced electron transference of porphyrin-anthraquinone dyads bridged with different lengths of links. Spectrochim Acta A Mol Biomol Spectrosc 78(1):437–442. CrossRefPubMedGoogle Scholar
  50. 50.
    Chu TS, Lu R, Liu BT (2016) Reversibly monitoring oxidation and reduction events in living biological systems: recent development of redox-responsive reversible NIR biosensors and their applications in in vitro/in vivo fluorescence imaging. Biosens Bioelectron 86:643–655. CrossRefPubMedGoogle Scholar
  51. 51.
    Yu F, Li P, Wang B, Han K (2013) Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. J Am Chem Soc 135(20):7674–7680. CrossRefPubMedGoogle Scholar
  52. 52.
    Petsalakis ID, Lathiotakis NN, Theodorakopoulos G (2008) Theoretical study on tertiary amine-fluorophore photoinduced electron transfer (PET) systems. J Mol Struct (Thoechem) 867(1–3):64–70. CrossRefGoogle Scholar
  53. 53.
    Sun X-F, Zhang Z-X, Li W, Bai F-Q, Wang J, Jia R, Kong C-P, Zhang H-X (2016) DFT/TD-DFT calculations on the sensing mechanism of a dual response near-infrared fluorescent chemosensor for superoxide anion and hydrogen polysulfides: photoinduced electron transfer. RSC Adv 6(106):104735–104741. CrossRefGoogle Scholar
  54. 54.
    Chen JS, Zhou PW, Li GY, Chu TS, He GZ (2013) Fluoride anion sensing mechanism of 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded supramolecular assembly: photoinduced electron transfer and partial configuration change. J Phys Chem B 117(17):5212–5221. CrossRefPubMedGoogle Scholar
  55. 55.
    Yu F, Li P, Li G, Zhao G, Chu T, Han K (2011) A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J Am Chem Soc 133(29):11030–11033. CrossRefPubMedGoogle Scholar
  56. 56.
    Verbitskiy EV, Gorbunov EB, Baranova AA, Lugovik KI, Khokhlov KO, Cheprakova EM, Kim GA, Rusinov GL, Chupakhin ON, Charushin VN (2016) New 2H-[1,2,3]triazolo[4,5-e][1,2,4]triazolo[1,5-a]pyrimidine derivatives as luminescent fluorophores for detection of nitroaromatic explosives. Tetrahcdron 72(32):4954–4961. CrossRefGoogle Scholar
  57. 57.
    Zhao G-J, Liu J-Y, Zhou L-C, Han K-L (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111(30):8940–8945. CrossRefPubMedGoogle Scholar
  58. 58.
    Zhao G-J, Han K-L (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45(3):404–413. CrossRefPubMedGoogle Scholar
  59. 59.
    Becke AD (2014) Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys 140(18):18A301. CrossRefPubMedGoogle Scholar
  60. 60.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224. CrossRefGoogle Scholar
  61. 61.
    Fan Gh, Kl Han, Gz He (2013) Time-dependent density functional-based tight-bind method efficiently implemented with OpenMP parallel and GPU acceleration. Chin J Chem Phys 26(6):635–645. CrossRefGoogle Scholar
  62. 62.
    Johnson ER, Shahar K, Mori-Sánchez P, Contreras-García J, Cohen A, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627. CrossRefGoogle Scholar
  64. 64.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. CrossRefPubMedGoogle Scholar
  65. 65.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104(21):4811–4815CrossRefGoogle Scholar
  66. 66.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57. CrossRefGoogle Scholar
  67. 67.
    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620. CrossRefPubMedGoogle Scholar
  68. 68.
    Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517CrossRefGoogle Scholar
  69. 69.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107(8):3032–3041. CrossRefGoogle Scholar
  70. 70.
    Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface-charges (ASC) methods in solvation problems-iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16(12):1449–1458CrossRefGoogle Scholar
  71. 71.
    d’Antuono P, Botek E, Champagne B, Spassova M, Denkova P (2006) Theoretical investigation on 1H and 13C NMR chemical shifts of small alkanes and chloroalkanes. J Chem Phys 125(14):144309. CrossRefPubMedGoogle Scholar
  72. 72.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16. Gaussian, Inc, WallingfordGoogle Scholar
  73. 73.
    Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7(8):2498–2506. CrossRefPubMedGoogle Scholar
  74. 74.
    Adamo C, Le Bahers T, Savarese M, Wilbraham L, García G, Fukuda R, Ehara M, Rega N, Ciofini I (2015) Exploring excited states using time dependent density functional theory and density-based indexes. Coord Chem Rev 304–305:166–178. CrossRefGoogle Scholar
  75. 75.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. CrossRefPubMedGoogle Scholar
  76. 76.
    Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142. CrossRefGoogle Scholar
  77. 77.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153–163. CrossRefGoogle Scholar
  78. 78.
    Politzer P, Murray J (1991) Molecular electrostatic potentials and chemical reactivity. Comput Chem 2:273–312Google Scholar
  79. 79.
    Boys SF, Bernardi F (2006) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. CrossRefGoogle Scholar
  80. 80.
    Zhang XQ, Yuan JN, Selvaraj G, Ji GF, Chen XR, Wei DQ (2018) Towards the low-sensitive and high-energetic co-crystal explosive CL-20/TNT: from intermolecular interactions to structures and properties. Phys Chem Chem Phys 20(25):17253–17261. CrossRefPubMedGoogle Scholar
  81. 81.
    Michael K (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China
  2. 2.School of Physics Science, State Key Laboratory of Bio-Fibers and Eco-TextilesQingdao UniversityQingdaoPeople’s Republic of China
  3. 3.Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  4. 4.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.College of ScienceLiaoning University of TechnologyJinzhouPeople’s Republic of China

Personalised recommendations